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Just Intervals and Tone Representation in Contemporary Music 

Abstract 
 
 Historically, intervals between musical pitches have been understood through two 

distinct conceptual models: either as distances in an imaginary space or as ratios between 

frequencies or string lengths. Each model has its own biases: the distance model is well-

suited to constructing abstract pitch geometries, while the ratio model offers insight into 

an interval’s sonic quality and stability. In recent music theory scholarship, the popularity 

of the distance model has led to the neglect of interval ratios: in this dissertation, I argue 

that a return to the ratio model offers a deeper understanding of many works of 

contemporary music which are difficult to analyze with distance-based tools. 

 One subset of the ratio intervals is of particular interest: the just intervals, intervals 

with frequencies related by simple whole number ratios like 3/2 or 5/4, have historically 

been associated with musical consonance. The psychoacoustical properties which give 

simple just intervals their consonant effect persist for intervals with more complex ratios; 

such “extended just intonation” has been explored by composers including Harry Partch 

and Ben Johnston. In addition to their consonance, just intervals strongly imply a 

harmonic root, providing cognitive support for various forms of tonal centricity. 

 In order to apply just intonation theory to a broader variety of music, I propose a 

theory of harmonic perception based on Hugo Riemann’s Tonvorstellung. I argue that 

even intervals which are not perfectly just tend to share harmonic properties with the 

nearest just interval—for example, we hear a piano’s tempered major third as essentially 

equivalent to a just major third, even though the tempered third is slightly wider. I call 
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this process of matching a heard interval to a nearby just interval “tone representation.” 

The theory is developed into three preference rules for practical application—these rules 

draw on recent research in Gestalt and music psychology. 

 The theory is used to analyze twentieth-century works by composers including 

Arnold Schoenberg, György Ligeti, La Monte Young, and Gérard Grisey. As a pragmatic 

theory based in perception, tone representation can illustrate the common factors between 

works by composers with very different aesthetics and compositional techniques.  
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Preface 
 
 Since the beginning of Western music theory, two ways of conceptualizing interval 

have shared an uneasy coexistence—one model conceives of intervals as ratios between 

frequencies or string lengths, emphasizing pure tunings and acoustical relationships, 

while the other model conceives of intervals as distances in space, focusing on relative 

sizes and abstract geometries. In recent years, theorists have tended to focus on the 

distance model at the expense of the ratio model—pitch-class set theory, for example, 

defines interval as a mathematical distance, but is silent on the actual sonic properties of 

each interval. 

 In this dissertation, I argue for a revival of the ratio model through the concept of 

tone representation: the mental association of heard sounds with just intervals (the 

intervals whose frequencies are related by simple, whole-number ratios) including their 

harmonic meaning and root implications. Tone representation is based on Hugo 

Riemann’s idea of Tonvorstellung, as well as recent work by the composer and theorist 

James Tenney. The first chapter of this dissertation establishes the five basic premises of 

my argument. Where possible, I have offered supporting evidence from related 

disciplines, including acoustics, psychoacoustics, and music psychology. Each premise is 

illustrated with one or more musical examples. 

 Chapter 2, “A Theory of Tone Representation,” lays out the technical apparatus of 

my theory. After explaining some of the basic tools of ratio intervals, I offer three basic 

preference rules for analyzing music using the principle of tone representation. These 

preference rules are based on the theory that in our cognitive processing of music, we 

tend to prefer the simplest harmonic explanation of any given collection of sounds—we 
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prefer to minimize the number of fundamentals or harmonic roots, to posit the simplest 

just ratio relationships (i.e. the ratios expressible with the smallest numbers), and to avoid 

drastic “mental correction” of out-of-tune intervals. What emerges is not a strict 

algorithm for analysis, but rather a flexible set of preference rules and analytical 

techniques which can be applied pragmatically depending on the musical context.   

 In the third chapter, “Extended Just Intonation in Theory and Practice,” I examine 

various twentieth-century applications of the ratio model of interval, with an emphasis on 

the expansion of just intonation to include higher prime numbers than the 2s, 3s, and 5s 

of Renaissance tuning theory. Beginning in the early-twentieth century, mainstream 

composer-theorists like Arnold Schoenberg and Paul Hindemith often evoked the 

acoustical properties of just intervals as an explanation for complex twelve-tone 

harmonies: later, precisely tuned extended just intonation was advocated by experimental 

American composers Harry Partch and Ben Johnston. European composers interested in 

just intervals and the closely related overtone series include György Ligeti and the 

“spectralists” Gérard Grisey and Tristan Murail.1 In this chapter, the different theories 

and aesthetics of these composers are compared, with brief analyses of selected works. 

                                                
1 The simple ratios between frequencies that define just intonation are also found between the pitches of the 
overtone series. The overtone series (also “harmonic series”) is a collection of frequencies in the series f, 2f, 
3f, 4f, 5f, etc. (where f is the fundamental frequency). Between the third and fourth members of the series 
(to take an example), we find the just interval 4/3, a perfect fourth. By extending the series indefinitely, we 
can find all just interval ratios between members of the series.  
 The idealized frequency relationships of the overtone series are closely approximated in the 
harmonic spectra of many real-world sounds. Most sources of sound produce a combination of vibrations at 
many frequencies: one of the most remarkable properties of our auditory system is its ability to accurately 
recognize that these frequencies come from a single source, and to combine the frequencies into a single 
perceived sonic object. The harmonic spectrum of a sound describes the specific frequencies and 
amplitudes of all of its component periodic vibrations. Any of these component vibrations can be called a 
partial. While (by definition) the frequencies of overtones always follow the harmonic series f, 2f, 3f, etc., a 
sound may have partials that are inharmonic: for example, the sound of a bell includes many partials which 
do not fit into any one harmonic series. When a sound’s partials do match the harmonic series, they will be 
identical with overtones: we can refer to them as harmonic partials. The physics and psychoacoustics of the 
overtone series and just intervals are discussed in more detail on pages 20-25 below. 
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 The fourth and final chapter examines music by the French spectralist composer 

Gérard Grisey (1946-1998). Spectralist composers use the harmonic spectra of natural 

sounds as basic musical material—for example, the beginning of Grisey’s piece Partiels 

imitates the spectrum of a trombone’s low E by assigning each partial of the sound to a 

member of the instrumental ensemble. Grisey often used distorted versions of harmonic 

spectra as a contrast to the pure tunings of the overtone series—such distortions raise 

interesting questions about the way we perceive harmony, which the theory of tone 

representation can help to answer. This chapter includes a brief introduction to the 

spectral techniques developed by Grisey and an analysis of his complex late work Vortex 

Temporum (1994-96).    
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CHAPTER 1: Basic Premises 
 

Introduction: Interval as distance, interval as ratio 
 
 Interval, the relationship between two pitches, is the most basic concept of Western 

music theory—it is not from any single pitch, but from the combination and comparison 

of pitches with one another that musical meaning begins to emerge. Though the concept 

of interval is essential to our thinking about music, it is far from straightforward—the 

sense in which we use the term today combines ideas from different periods of musical 

history into a complex hybrid of different musical practices and mathematical 

abstractions. 

 Throughout the history of Western music, theorists have proposed two 

fundamentally different models of interval: one is based on the idea that interval quality 

is a result of the ratio between the frequencies of two pitches, while the other defines 

interval as the distance in pitch height between the two pitches.1 Simple frequency ratios 

like 2/1 (the octave) and 3/2 (the perfect fifth) produce the perfectly tuned harmonic 

intervals which are essential to our music theories, though these intervals are often 

described as distances instead: twelve semitones or seven diatonic scale steps for the 

octave, seven semitones or four scale steps for the fifth. The intervals with simple 

frequency ratios are closely related to the physical properties of vibrating bodies—these 

                                                
1 Several music theorists have described this split between two different ways of understanding pitch. Ben 
Johnston explains the split as the difference between two different types of psychological organization, one 
based on an “interval scale” and the other on a “ratio scale”—this is based on the work of psychologist S. 
S. Stevens: see Johnston, “Scalar Order as a Compositional Resource,” Perspectives of New Music 2/2 
(1964): 56-76. James Tenney makes a similar distinction when he describes “harmony” as “the aspect of 
music and musical perception that has to do with relations between pitches other than simply the relations 
higher/lower or up/down” (American Mavericks interview, http://musicmavericks.publicradio.org/listening, 
accessed April 15, 2008). The distance conception of interval is the basis of several influential spatial 
models in recent theory including Neo-Riemannian transformational theory and the geometrical music 
theory of Dmitri Tymoczko, Clifton Callender, and Ian Quinn. 
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intervals can be found between the overtones of a complex periodic sound like a violin or 

flute tone. In broad terms, the ratio model tells us about the sonic quality (the degree of 

concordance and stability) and the root implications of an interval, while the distance 

model offers an easy way to measure and compare intervals, but ignores the way that the 

constituent pitches combine acoustically. 

 Both models have an impressive pedigree—the discovery of the correspondence 

between integer ratios and the basic musical consonances is attributed to the Greek 

philosopher Pythagoras in the sixth century BCE,2 and a distance theory was proposed by 

Aristoxenus of Tarentum about two hundred years later. Aristoxenus rejected the 

Pythagorean ratio model in favor of a distance model based on the equal divisions of the 

tone into two, three, or four parts as units of measurement (such equal divisions of the 9/8 

whole tone were an impossibility in Pythagorean theory). Aristoxenus found the then-

prevalent Pythagorean theories too dependent on numerical abstraction and out of touch 

with musical practice: as Annie Bélis describes his innovation, “No longer could music 

be a matter of calculating intervals expressed by the relationship of two numbers, for its 

concern is not mathematical entities but sound...”3 For Aristoxenus, melodic intervals had 

to be explained in terms of melody and sound itself, not as the result of abstract 

numerical relationships. He conceived of “pitch as a linear dimension on which notes 

appeared as points, rejecting the Pythagorean treatment of notes as quantities, and 

                                                
2 In Greek theory, ratios were measured between string lengths on a monochord, not between frequencies 
(the correlation of frequency with pitch was not discovered until the sixteenth century). String lengths are 
inversely related to frequency: since longer strings yield lower pitches with lower frequencies, strings with 
lengths in the ratio 5/4 produce frequencies in the ratio 4/5. 
 
3 Annie Bélis, “Aristoxenus,” Grove Music Online, http://www.grovemusic.com, accessed April 15, 2008. 
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intervals as ratios between them.”4 His treatise, written entirely without the use of ratios, 

nonetheless relies on the existence of intervals like the fifth, fourth, and whole tone—the 

intervals that Pythagoreans defined by the ratios 3/2, 4/3, and 9/8. With his stated aim of 

avoiding ratio descriptions of these intervals, Aristoxenus must instead define them as 

givens of auditory perception—we agree “by ear” that the intervals of the octave, fifth, 

and fourth are consonances. The Aristoxenean approach is about describing an existing 

practice, while Pythagorean approaches try to explain why each interval by an appeal to 

eternal truths of number and proportion.5  

 The schism between Pythagorean and Aristoxenean viewpoints is described by 

Lawrence Zbikowski as the distinction between two different “cross-domain” cognitive 

mappings: Pythagoras invokes the idea of pitches as physical objects with fixed 

numerical properties, while Aristoxenus proposes “a mapping from the familiar domain 

of two-dimensional space onto that of music.” As Zbikowski summarizes, “On closer 

inspection, the Pythagorean and Aristoxenean construals of interval are indeed 

incommensurate. From the Pythagorean perspective, pitches are physical objects, and an 

                                                
4 Andrew Barker, Greek Musical Writings, vol. 2 (Cambridge: Cambridge University Press, 1989): 123-
124. 
 
5 Traditionally, Aristoxenus has been associated with the evidence of the senses (sensus), and Pythagoras 
with numerical measurement (ratio). More recent developments complicate this picture. Since the 
nineteenth-century research of Hermann von Helmholtz, it has been apparent that what lends the intervals 
that Aristoxenus sensed as stable their stability is precisely the rational relationship between the 
frequencies of their constituent pitches. Simple ratios between the two pitches allow their overtones to align 
in a way that gives the sensory effect of consonance. Thus, in a reversal of the traditional view, the ratios of 
Pythagorean theory (supplemented by research in auditory perception after Helmholtz) can tell us a great 
deal about the sensual properties of intervals.  
 In recent theoretical work, the distance model pioneered by Aristoxenus has been far more 
prominent than the ratio model, but it is often applied in an abstract way that is distanced from the concept 
of sensus. Many recent distance-based theories use the concept of interval as distance primarily as a 
numerical measurement, not a reflection of aural experience. In such theories, we see Aristoxenus’s 
distance approach to interval allied to the kind of mathematical abstraction typically associated with 
Pythagoreanism. The theory of tone representation developed in this dissertation attempts to balance ratio 
and sensus by drawing on both Pythagorean and Aristoxenean ideas: the theory invokes interval ratios, but 
in a way that reflects sensory experience (as described by modern psychoacoustical research).  
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interval describes the relationship between these objects. From the Aristoxenean 

perspective, pitches are breadthless points that simply mark out an expanse of two-

dimensional space, and an interval is the expanse itself. Each mapping gives an account 

of interval, but each leads to a different conceptualization of musical structure.”6 The two 

models remain in an uneasy coexistence today, though familiarity has made it easy to 

overlook the deep-rooted contradictions between the two concepts; the tension between 

distance and ratio is apparent in definitions such as this one (from a Harvard University 

course website): “An interval is the distance, or difference in pitch height, between two 

notes. It is also the sound of two pitches occurring at that given distance” (emphasis 

added).7 

 An interval, then, is both a “distance” and a “sound”—and this strange double 

nature also affects the terms we use to describe intervals. We often emphasize the 

distance aspect of interval, with terms like “augmented fourth,” “semitone,” or “interval 

class 6”; in other situations, we’re more interested in the sonic quality of the interval: 

“dissonant,” “smooth,” “stable,” “beating.” In day-to-day usage, the overlap between 

distance and sound doesn’t present a problem—we happily accept that the interval of a 

perfect fifth has properties of both types: distance (defined as “seven semitones,” “a 

major third plus a minor third,”) and sound (“a perfect consonance,” “ringing”). When it 

comes to building a more formal music theory vocabulary, though, confusions between 

the two aspects of interval can become problematic: as for example when we find 

                                                
6 Lawrence Zbikowski, Conceptualizing Music: Cognitive Structure, Theory, and Analysis (New York: 
Oxford University Press, 2002): 5-17. 
 
7 Website for First Nights (LAB-51), taught by Thomas F. Kelly. Theory Tutorial. 
http://isites.harvard.edu/icb/icb.do?keyword=k16235, accessed April 15, 2008.  
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ourselves speaking of a distance as consonant or dissonant, rather than the sound of the 

two pitches together.   

 Some theorists have sidestepped the problem by allowing only the distance aspect 

of interval into their formal theories: pitch-class-set theory, for example, simply omits the 

sonic quality of intervals (with the exception of the octave) from its model of pitch 

relations.8 As a result, pitch-class theories excel at describing distance-based musical 

geometries—motivic transformations, symmetries in pitch and pitch-class spaces, etc.—

but the relationship of these abstract geometries to any actual sonic properties is not 

explicitly theorized. Pitch-class set theory defines any interval by the distance between its 

constituents measured in equal-temperament semitones: for example, the major third 

comprises four semitones. To say anything about the sonic qualities of this interval, 

though, pitch-class set theory needs to be supplemented by acoustic facts—the interval is 

usable as a consonance and implies root status for its lower note only because it closely 

approximates the just intonation major third 5/4. Such qualitative information is only 

available by turning away from pure pitch-class-set thinking into a body of theory which 

is informed by psychoacoustics—a body of theory which takes the ratio, rather than the 

distance approach to interval.9       

 Outside the mainstream of academic music theory, theorist-composers like Harry 

Partch and La Monte Young developed complex harmonic systems based entirely on the 

                                                
8 Robert Morris describes the equally-tempered space of pitch-class-set theory as “fundamentally different 
from pitch-spaces where intervals have been traditionally produced from ratios of integers.” See Morris, 
Composition with Pitch-Classes: A Theory of Compositional Design (New Haven, Conn.: Yale University 
Press, 1987): 35. 
 
9 It should be remembered that all musical temperaments are compromises based on an ideal of just 
intonation—all the intervals in our chromatic scale have a counterpart in just intonation, and in fact the 
equal-tempered scale itself evolved historically as a way to approximate many just intonation relationships. 
Pitch-class-set theory takes the equal-tempered scale as a given, ignoring the acoustical reasons for its 
historical development. 
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ratio approach to interval. These systems are more cognizant than distance-based theories 

of the acoustical quality of each interval, but demand extremely precise tuning—to a 

degree which can be impractical for musicians to realize in performance except on 

specially designed or modified instruments (Partch’s homemade orchestra, for example, 

or Young’s “well-tuned piano”). For these composers, purity of intonation is 

paramount—in many cases, this focus on interval quality leads to a drastically minimalist 

approach, as in Young’s sine-wave installations or certain works by James Tenney. In 

these works, the long sustain of perfectly tuned just sonorities allows a meditation on 

sonic quality, but precludes the melodic and motivic development better explained by 

distance models of pitch. 

 In this dissertation, I seek a rapprochement of the two concepts of interval. In the 

context of current mainstream academic music theory, which has strongly favored the 

distance model, this rapprochement will entail the greater inclusion of ratio-based 

thinking. Readers whose background is in the compositional theory of extended just 

intonation may find that my argument does the opposite, injecting distance-theory 

characteristics into the pure just intonation model to make it more flexible and practical 

for analytical work. To me, it is undeniable that both distance and ratio play important 

roles in our musical experience—Western tonality is a historical instance of a musical 

language which strikes a careful balance between distance and ratio to create structures of 

extraordinary complexity and cognitive efficiency.10 In the chapters which follow, I 

explore ways that this productive balance between the two modes of thought could 

inform the analysis of contemporary music. 

                                                
10 An engaging discussion of the balance of ratio and distance in tonal music can be found in Andrew 
Mead’s article “Bodily Hearing: Physiological Metaphors and Musical Understanding,” Journal of Music 
Theory 43/1 (Spring 1999), 1-19. This article is discussed in greater detail later in this chapter. 



Chapter 1: Basic Premises 

—7—  

 Accepting a different approach to interval can lead to a substantial rethinking of our 

entire theoretical apparatus. In recent years, one of the most influential reformulations of 

the idea of interval has been David Lewin’s advocacy of transformation in place of 

distance.11 By reintroducing ratios to this discussion, we find another language for 

thinking about relationships. What if we think of interval not as a distance (Forte et al.) or 

a transformation (Lewin), but instead as a kind of attunement? When we sing a just 

interval with another singer, our experience is not of measuring a distance from the other 

pitch, but of fitting our voice into our partner’s sound to create a single, blended sonic 

quality. Under the ratio model, we can understand interval not as a distance or a path to 

be traversed, but rather as two becoming one—two pitches becoming a single interval, a 

single quality. By describing intervals as just ratios rather than distances in an abstract 

space, we can speak of the sensual aspects of interval instead of the more cerebral 

measurements offered by the distance approach. 

 Even as academic theorists have focused more and more narrowly on a distance 

model of interval, contemporary composers (including György Ligeti, Alvin Lucier, 

Gérard Grisey, and many others) have been increasingly drawn to sonic phenomena 

better explained by the ratio model. The move away from serialism as a dominant 

aesthetic has led some composers toward a new interest in sound as a physical 

phenomenon: “sound as sound” as opposed to the abstractions of serial intervallic 

                                                
11 See Lewin’s Generalized Musical Intervals and Transformations (New Haven, Conn.: Yale University 
Press, 1987). In an earlier article (“On Generalized Intervals and Transformations,” Journal of Music 
Theory 24/2 (Autumn 1980), 243-251), Lewin describes the difference between distance and 
transformation—the system he describes “starts with the notion of transforming its objects, one into 
another, and then defines, as the interval from s to t, a certain transformation, unique of its sort, which 
carries s to t. By this means, transposition operations are actually conceived as defining intervals, rather 
than vice versa. [...] It is often useful to think of an interval i not as an abstract directed “distance” from s to 
t, but rather as a label for the corresponding transposition operation Ti, a unique operation of its kind which 
‘moves s to t.’” 
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structure. Such composers have proposed a variety of compositional theories—from pure 

extended just intonation in the music of Ben Johnston to the approximations of exotic 

sound spectra by Tristan Murail—but to date there have been few attempts to offer a 

theory of listening for this repertoire. Such a theory would apply equally well to music 

conceived under very different aesthetic ideologies, foregrounding the commonalities in 

our listening experience from work to work.  

 A ratio-based theory of listening will often entail the inclusion of higher numbers 

and more complex ratios than one finds in conventional just intonation theory; Ben 

Johnston refers to the tuning systems including higher prime numbers like 7, 11, and 13 

as “extended just intonation.” The idea that new music requires new and more complex 

intervals echoes Arnold Schoenberg’s belief that the history of harmony could be 

described as a continuous climb into higher regions of the overtone series.12 Thus, the 

dissonant harmonies of many twentieth-century works can be understood as an extension 

of earlier harmonic practices to include more distant harmonic ratios, rather than a 

complete abandonment of earlier harmonic practice, as suggested by the word “atonal.” 

(Schoenberg disliked the description of his own music as atonal, and suggested that 

“pantonal” would be more accurate—though this never caught on among musicians or 

musicologists.) 

 If the ratio model, extended to the higher primes, accurately reflects how we 

perceive musical harmonies, it can offer an interopus theory of harmony applicable to 

music of many different styles and eras. Because the intervals built from the prime 

numbers 7, 11, and 13 fall “between the keys” of standard twelve-tone equal 

temperament, the ratio model is especially applicable to music that uses microtonal 
                                                
12 Arnold Schoenberg, Theory of Harmony (Berkeley: University of California Press, 1983): 21. 
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intervals. However, the ratio model of interval can also shed light on non-microtonal 

music, including many “atonal” works written in standard equal temperament. My model 

of interval offers an alternative to the pitch-set-class analysis which is usually applied to 

this repertoire—understanding intervals as ratios makes it possible to draw convincing 

links (based on shared harmonic roots) between groups of pitches belonging to different 

set classes or of different cardinalities. 

 Ratios offer a way of comparing harmonies across repertoires that superficially 

might seem very different—chords from atonal piano pieces by Schoenberg and Scriabin 

can stand next to the sonic installations of Alvin Lucier and La Monte Young or the just 

intonation works of Harry Partch. Concert-hall music since the 1960s has often drawn 

inspiration from acoustics and just intervals, as part of an aesthetic reaction against the 

abstractions of serial music. The ratio-based model of pitch is particularly suited to this 

repertoire, which includes (but is not limited to) the music of American experimental 

composers like Johnston, Tenney, Lucier, and Young, French spectralist music by Murail 

and Grisey, and works by Ligeti, Stockhausen, and Scelsi. While some scholars of 

twentieth-century music (especially Milton Babbitt) have emphasized the “contextuality” 

of twentieth-century works—the way each work creates its own internal structural 

expectations and coherence—my interopus approach attempts to describe some of the 

listening mechanisms that we bring as listeners to every work we experience. The theory 

I offer here can make similar statements about music in all kinds of tuning systems and 

pitch spaces, since it is conceived from the position of a listener, not as an abstract, work-

specific mathematical system.  
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 My motivation for promoting the ratio model is essentially pragmatic—this model 

offers a way of thinking about and discussing aspects of music which are difficult or 

impossible to describe with theories and vocabulary based on the distance model. The 

pragmatic method, as described by William James, tries “to interpret each notion by 

tracing its respective practical consequences.”13 Paraphrasing Charles Peirce, James 

continues: “to develop a thought’s meaning, we need only determine what conduct it is 

fitted to produce: that conduct is for us its sole significance.” A music theory based on 

pragmatism is thus instrumental—its goal is to further our understanding of our 

experience of the world, not to get at some absolute, abstract truth. James also proposes 

an instrumental view of truth: “ideas (which themselves are but parts of our experience) 

become true just in so far as they help us to get into satisfactory relation with other parts 

of our experience.” When we take a pragmatic approach to theory, truth is not determined 

by the mathematical elegance or even internal logic of a system, but rather by the ability 

of the theory to convincingly make sense of musical experience. By taking musical 

experience seriously rather than building abstractions in a vacuum, a pragmatic music 

theory stands or falls by the musical value of the thoughts and further experiences that 

such a theory makes possible.14 

 The pragmatic theory that I propose in this dissertation is valuable, then, to the 

extent that it is useful—as Schoenberg wrote in his Theory of Harmony, “whenever I 

theorize, it is less important whether these theories be right than whether they be useful as 

                                                
13 William James, “What Pragmatism Means” in Pragmatism, a New Name for Some Old Ways of 
Thinking: Popular Lectures on Philosophy (New York and London: Longmans, Green, and Co., 1922): 2. 
 
14 The suspicion of abstractions in a pragmatic theory echoes the distinction drawn by D’Alembert between 
the esprit systématique and the esprit de système. See Jean Le Rond D’Alembert, trans. Richard N Schwab, 
Preliminary Discourse to the Encyclopedia of Diderot. (Chicago: University of Chicago Press, 1995): 22, 
95. 
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comparisons to clarify the object and to give the study perspective.”15 I agree with 

Schoenberg that the strength of musical theories depends on how well they allow 

interesting or convincing discussion of pieces of music—applicability in a good close 

reading is more important than theoretical elegance or formal completeness. A pragmatic 

music theory can affirm multiplicity as a positive trait, rather than condemning it as the 

lack of unity—it values analyses which reflect the complexity of experience over those 

which flatten experience into a single, “unified” description. The ratio model can clarify 

certain aspects of the musical “objects” we investigate, though I do not see it as 

completely displacing established distance-model theories—rather, it can fruitfully be 

applied in combination with other models of pitch. 

 The idea of interval ratios may seem abstract and far-removed from the direct aural 

experience of listening to music. I would argue, however, that interval ratios are the key 

to explaining some of our most visceral musical intuitions and offer a way of formalizing 

and clarifying those intuitions in a diverse range of musical contexts. Taken as a vivid 

description of our experience of sonic quality and stability, interval ratios are not an 

obsolete remnant of historical music theory, but remain deeply relevant to the way we 

make and hear music today. In this dissertation, I advocate a ratio model of interval 

(drawing on the theories of Hugo Riemann and James Tenney) which allows a degree of 

tolerance or mistuning. Psychoacousticians and music psychologists have experimentally 

confirmed the importance of frequency ratios to the way we hear and understand pitch 

                                                
15 Schoenberg, Theory of Harmony, 19; quoted in Cook, “Epistemologies of Music Theory,” in The 
Cambridge History of Western Music Theory, ed. Thomas Christensen (Cambridge: Cambridge University 
Press, 2002): 96.  Cook’s article includes a detailed exploration of the explanatory goals of music theory. In 
a pragmatic approach, “right and wrong” don’t apply to music-theoretical ideas (except in the trivial cases 
of self-contradiction)—rather, music theories (and analyses) succeed or fail based on how well they 
convince us of their results, how much they intrigue and fascinate us, and whether they help us to a deeper 
musical understanding. 
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combinations. Such experiments suggest that even out-of-tune versions of just (ratio-

based) intervals can carry the same musical meanings as the perfectly-tuned versions.16 

Hugo Riemann’s early-twentieth-century theory of Tonvorstellungen (tone 

representations) made a similar proposition: that the harmonic sense we make of all heard 

intervals depends on our understanding them as “representations” of purely-tuned just 

intervals. Accepting this degree of tolerance helps to free ratio-based pitch theory from its 

Pythagorean, numerological heritage, and suggests broader analytical applications.17 This 

model can provide the vocabulary and tools we need to analyze an important body of 

contemporary music which is poorly served by existing, distance-based theories—and 

also insufficiently explained by a “purist” just intonation approach. This model is the 

basis for new analytical tools, the usefulness of which I will demonstrate in analyses of 

music by Ligeti, Grisey, and others. 

 The acceptance of a degree of mistuning is a pragmatic decision—this tolerance for 

deviation keeps us in touch with the intuitions of our surprisingly forgiving and 

imaginative ears, and avoids the arguments over very small pitch differences which can 

arise from a “purist” just intonation approach. The broader scope for interpretation 

allowed by tolerance broadens the range of works which can be illuminated by ratio 

theory, and also recognizes the complexity and messiness of our experience of music in 

time—even the simplest harmonic progressions can demand many reinterpretations of the 

meaning of pitches and intervals as they unfold.  
                                                
16 For an overview of psychological research on tuning and temperament, see E. M. Burns and W. D. Ward, 
“Intervals, Scales, and Tuning,” The Psychology of Music, second edition, ed. Diana Deutsch (San Diego, 
California: Academic Press, 1999). 
 
17 This is another instance of balancing the demands of ratio and sensus: as in Pythagoreanism, just ratios 
provide the essential points of harmonic reference in my theory, but the Pythagorean demand for absolutely 
precise tuning is relaxed (based on psychological research into aural perception) to include approximate 
versions of the referential just intervals. 
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 As a preliminary to the full theory of tone representation for twentieth-century and 

contemporary music presented in Chapter 2, this chapter establishes the basic premises of 

the theory, illustrating each premise with musical examples. These range from piano 

pieces by Scriabin to Tuvan throat singing and the microtonal improvisations of La 

Monte Young. The five premises which I propose are listed below—detailed explanations 

and demonstrations of each follow in the remainder of this chapter. 

 

1.  Just intervals are the referential intervals for harmonic perception.18 

2.  The principles of standard just intonation (based on the integers 2, 3, and 5 

 and their multiples) can be extended to include higher prime numbers. 

3.  Each just interval implies a fundamental or root, and a specific closely-

 related harmonic domain based on the overtones of that fundamental. 

4.  We recognize just intervals even when they are slightly mistuned. 

5.  Faced with large and complex harmonies, we tend to resolve them into 

 combinations of multiple simpler harmonies if possible. 

 

 The brief discussions of musical works in this chapter are not intended to be 

exhaustive analyses, but rather introductory demonstrations of certain important concepts 

which will be developed in the remainder of this dissertation: e.g., intervals as frequency 

ratios, the natural overtones of harmonic sounds, and the cognitive recognition of 

                                                
18 The term “referential” is borrowed from the theoretical writings of James Tenney, whose assertion that 
the simple just ratios are referential for the auditory system I have adopted here. We understand intervals 
near any of the simple just intervals as variants of those intervals; the heard interval is takes on a harmonic 
meaning by reference to the just interval it approximates. James Tenney, “The Several Dimensions of 
Pitch,” in The Ratio Book: A Documentation of the Ratio Symposium, Royal Conservatory, The Hague, 14-
16 December 1992, ed. Clarence Barlow, Feedback Papers 43. (Cologne: Feedback Studio Verlag, 2001): 
102-115: 110. 
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approximate versions of just intervals. This survey emphasizes the work of American 

experimental composers including Alvin Lucier and James Tenney, in large part because 

their minimalist works explicitly address many of the pitch phenomena I plan to discuss. 

Aspects of pitch which are foregrounded in the music of Tenney and Lucier play a 

similar, if less obvious, role in music of many styles. As noted above, one of my guiding 

assumptions in this survey is that we bring many of the same listening strategies to our 

experience of different kinds of music—that we don’t completely exchange our “tonal” 

ears for “atonal” ones when we switch from Mozart to Schoenberg, or our “experimental” 

ears for “serial” ears when we switch from Lucier to Boulez. Thus, we can take insights 

from the complex microtonal pitch world of Tenney and Lucier, and apply them even to 

works written for normally tuned instruments: though specifics may differ, the essential 

perceptual mechanisms remain the same.19   

 

Premise 1: Just intervals are the referential intervals for harmonic 
perception. 
 
James Tenney: Koan for solo violin (1971) 

 Let’s begin with a riddle. In Zen Buddhism, a koan is a brief story or question 

which serves as the focus of a meditation—koans often seem paradoxical or meaningless, 

but are intended to direct the Zen student to sudden and illuminating shifts in perspective, 

                                                
19 This is not to say that the importance of the distance and ratio models are equal for all musical situations.  
A motivically dense  composition by Schoenberg, for example, might demand more from our “distance” 
model of interval, while a microtonal piece by Tenney will depend much more on hearing the interval 
qualities and harmonic implications defined by ratio. Tonal music draws on both aspects of interval, which 
is perhaps one of the reasons for its expressive power and historical success. 
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breaking established patterns of thought. (A well known example is the koan “What is the 

sound of one hand clapping?” attributed to the Zen teacher Hakuin.20) 

 James Tenney’s Koan for solo violin (1971) explores the surprising complexities of 

a continuous progression through the pitch continuum. The piece is one of a series of ten 

“postal pieces” written by Tenney between 1965 and 1971, each exploring a particular 

musical idea through a minimally-notated, postcard-sized score. Koan combines a 

continuous pitch glissando with the fixed pitches of the violin’s open strings. The 

violinist plays a “fairly slow tremolo,” rocking the bow from one string to the next. 

Beginning with the open fifth between the G and D strings, the violinist slowly slides up 

the G string toward the D above it. Compared to standard rates of pitch change in 

Western music, the speed of the glissando is glacial; in his recording, Marc Sabat takes 

about four minutes to span the fifth between G and D—this means that it takes about 35 

seconds just to traverse a single semitone. After the violinist reaches a unison between 

the stopped G string and the open D string, he continues to slide upwards on the G string, 

expanding the interval from a unison to the fifth D-A. When he reaches the A on the G 

string, it’s possible to cross over to the open D and A strings with no change in pitch, and 

the whole process can start again with a glissando from D up toward A. This process 

continues into the upper reaches of the violin’s range. During the continuous upward 

glissando, the interval between the strings fans in and out between a fifth and a unison, 

finally opening out to an octave. The complete score of Koan is reproduced in Figure 1.1. 

                                                
20 Kamil V. Zvelebil, “The Sound of the One Hand,” Journal of the American Oriental Society, 107/1 
(1987): 125-126. 
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Figure 1.1: Score of James Tenney’s Koan for solo violin. Copyright 1971 by Sonic 
Art Editions. Used by permission of Smith Publications, 2617 Gwynndale Ave., 
Baltimore, Maryland. 
 
 The goal of a koan is not a specific answer so much as a re-assessment of the very 

assumptions of the question. Similarly, Tenney’s Koan seems to ask us to set aside our 

customary ways of thinking about pitch—the sparseness of musical events focuses our 

attention to the tiny changes in intervallic quality. Koan baffles our analytical tools, and 

in a sense, the very practice of analysis and close reading. On one hand, Koan is too 

obvious—the structure expressed in the score is a complete description (at least at the 

global level) of the work. It would seem that there’s no “hidden structure” here, waiting 

for explication by some eager analyst.21 On the other hand, Koan gives us little that our 

                                                
21 See Ian Quinn’s discussion of the analytical difficulties posed by minimalism in “Minimal Challenges: 
Process Music and the Uses of Formalist Analysis,” Contemporary Music Review 25/3 (June 2006): 283-
294. An analysis based solely on pitch distance would have little to say about Koan—such an analysis 
might accurately describe the pattern of changing intervals, but it’s difficult to see how that would bring 
anything to our attention that isn’t already implicit in the score.  Like many of Tenney’s other Postal 
Pieces, Koan is in part a critique of Western notation practice—in all these pieces, much more happens 
sonically than the notation itself indicates.  For example, in Beast (1971), Tenney graphically notates the 
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standard analytical tools can grasp—except for the pivotal open-string fifths and unisons, 

there are no clearly notated intervals, just a gradual slide from one fifth to the next. What 

could there be to say about the slowly evolving relationship between pitches?  

 The sense of any independent “notes” is obliterated by the continuity of the sound 

and the gradual changes in pitch. In a recent interview, Tenney describes his fascination 

with glissandi: 

I think one of the things that the glissando does is to remind us that 
frequency is a continuum and we don’t have to think of it in scale steps. 
We can organize it in a number of ways that break it down and structure it 
as something other than as a continuum, which I certainly do in any 
harmonic series piece. It’s in a sense a reminder of a certain reality, a 
physical reality about that parameter.22 

 
Koan is a reminder that despite the typical division of pitch space into discrete points, 

pitch is in fact continuous. The piece strips away the conventional signposts of interval 

size, leaving us confronted with the wilderness of the unbroken pitch continuum—in a 

sense then, we are in a “pre-theoretical” state, much as musical thinkers would have been 

before the theoretical breakthrough attributed to Pythagoras in the sixth century BCE.23 

Before Pythagoras’s theoretical innovations, Greek music had an established practice 

with specific scales and intervals, but there was no explanation for why certain intervals 

                                                                                                                                            
changing beat frequency of a closely tuned double bass interval, and in Having Never Written a Note for 
Percussion (1971), he notates nothing more than a single note, with a crescendo followed by a diminuendo, 
and the notation “very long.” We can distinguish between two roles for pitch notation: one, a “sound-
picture” of what one hears, and two, a “tablature” for realizing the piece.  In traditional notation, these are 
closely related—a score can be used both as tablature and as a sound-picture—but Tenney separates the 
two, with a simple “score” that offers complete instructions for realizing a very complex sonic result.  If we 
want to discuss this sonic result, we need to turn to the sounding music, not just the score—and we soon 
find aspects of the sound which can only be approached through the ratio model of interval. 
 
22 James Tenney and Donnacha Dennehy, “Interview with James Tenney.” Contemporary Music Review 
27/1 (February 2008), 79-89: 89.  
 
23 While Pythagoras is traditionally credited with the discovery of the interval ratios, there is little concrete 
historical proof that he is responsible.  Others responsible for this discovery, as Andrew Barker notes, 
might include Pythagoras’s disciples or anonymous practical musicians and instrument makers. See Barker, 
op. cit., 28-45.  
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were chosen and not others. Pythagoras’s theory offers an explanation, for the first time, 

of why certain intervals have musically desirable properties—stability, smoothness, 

etc.—while others do not.   

* * * 

 As Nicomachus of Gerasa (active in the early second century CE) tells the story, 

before Pythagoras’s revelation the size of intervals could be measured only “by ear”—

there was no way to check the error-prone sense of hearing in the same way that a visual 

estimation of size could be checked with a measuring rod. Ptolemy (also writing in the 

second century) gives the example of two circles, one drawn “by eye” and the other 

drawn with a compass—the freely-drawn circle might seem accurate until it is compared 

to the mathematically precise circle, which is immediately recognizable as more 

correct.24 In this pre-theoretical era, there was no way to rationally measure interval at 

all, except by aural approximation. 

 According to Nicomachus, Pythagoras was walking past a blacksmith’s workshop 

when he heard the clanks of hammers on anvils ringing together in beautifully concordant 

combinations, including the intervals of the octave, fourth, and fifth used in Greek music. 

Inspired to investigate, he interrupted the blacksmiths and—after a “great variety of 

experiments” on the shapes of the hammers, the kind of iron being hammered, and even 

the strength of the blacksmiths—weighed each of their hammers. He discovered that the 

weights of the hammers which rang consonantly together were all in simple ratios to one 

                                                
24 Barker points out that Ptolemy’s division between the senses and reason is complicated here by the fact 
that the senses are required to determine the superiority of the compass-drawn circle—to overcome this 
problem, Ptolemy offers a second premise, that “our senses are better equipped to judge such things than to 
construct them” (Barker, op. cit., 277, n9). The conflict between reason and the evidence of the senses is a 
common theme in music treatises of this period. See also Tenney’s comparison of a geometrically ideal 
circle to the simple just intervals in his article “The Several Dimensions of Pitch.” 
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another—their weights, from large to small, were precisely 12, 9, 8 and 6 units. The 

consonances which musicians had discovered by ear corresponded exactly with the ratios 

between the weights of the hammers: for example, the two highest hammers, with a 

weight ratio of 12/9 (simplified to 4/3), produced the interval of the perfect fourth. 

 Taken literally, the story of Pythagoras’s discovery is clearly untrue—modern 

acousticians confirm that there is no direct correspondence between the weight of a 

hammer and the pitch of the sound it produces. (The hammer’s pitch is determined by not 

just one, but a number of factors, including its density, material, and shape: its pitch is 

determined by our processing of a complex inharmonic spectrum, the sum of all its 

vibrating modes in three dimensions.) Such a direct correspondence does hold, though, 

between pitch and the lengths of string segments as measured on a monochord (the 

experimental instrument of the Greek music theorists)—we can best understand 

Nicomachus’s story as an origin myth for the entire school of Pythagorean harmonists. 

With the monochord, theorists could compare the sound of a string vibrating in its 

entirety to the same string stopped halfway along its length, producing the interval of the 

octave with the ratio 2/1. A similar demonstration showed how the sound of the whole 

string compared to the sound of three-quarters of the string yielded the interval of the 

fourth, 4/3. The combination of intervals based on the numbers 1, 2, 3, and 4 gave rise to 

all the intervals of Greek theory. (Pythagoras and his followers saw this correspondence 

as a reflection of the numerological structure of the universe, as represented by the 

mystical tetraktys—the numbers one to four expressed as the rows of an equal-sided 

triangle.) The ratios of Pythagorean theory become increasingly complex when applied to 

intervals smaller than the whole tone, which need to be generated from repeated iterations 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—20—   

of the basic intervals of 3/2 and 4/3; this iteration results in ratios like 256/243 (the 

limma, (4/3)5) or 2,187/2,048 (the apotome, (3/2)7).What has given the legend of 

Pythagoras and the smithy lasting interest is the way it dramatizes a strange discovery: 

that heard musical consonance can be explained by numbers—and not just any numbers, 

but by the simplest integers, 1, 2, 3, and 4. Somehow, the sensual quality of consonance 

is intimately tied to the abstract mathematical world of integers and their ratios.  

* * * 

 Let’s return to Tenney’s Koan—in fact, let’s focus on the first section of the 

glissando, the motion from the fifth G-D to the unison on D. What one immediately 

notices is that all intervals are not created equal—certain intervals seem to “click into 

place” at a specific moment in the glissando, while other intervals feel like they’re in 

motion, sliding toward one of the more stable intervals.25 It often seems like the pitches 

are straining toward the more stable points in the pitch domain—these stable intervals 

seem to exert a gravitational pull on nearby pitches. Figure 1.2 shows the points of 

stability that I hear in the opening of Koan, compared to the nearest simple just intervals. 

The most stable intervals, equivalent to standard tonal consonances, are shown in the top 

row—intervals that are only weakly stable are shown in the bottom row.  

 
D  D  D D  D 
G  A  B B  D  
3/2  4/3  5/4 6/5  1/1  
702¢  498¢  386¢ 316¢  0¢ 
 
 D  D   D 
 A  B↓   C

 7/5  9/7   9/8 
 583¢  435¢   204¢ 
Figure 1.2: Stable intervals in Koan (less stable intervals in lower row) 

                                                
25 This typifies the psychological concept of “categorical perception,” which is discussed further in relation 
to Premise 4 below. 
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 Stable intervals in the glissando between G and D include the initial perfect fifth G-

D, the perfect fourth A-D, the major third B-flat -D, and the minor third B-D. The stable 

intervals are precisely those which can be represented by simple frequency ratios: the 

fifth 3/2, the fourth 4/3, the major third 5/4, and the minor third 6/5. Even in this context, 

which is far removed from any traditional tonal syntax, these intervals have a quality of 

stability which differentiates them from the more mobile intervals in between.  

 The quality of stability is proportional to the simplicity of an interval’s ratio—

“perfect” consonances like the octave, fourth, and fifth have simpler ratios than the 

imperfect consonances of the major and minor thirds and sixths. The traditional 

consonances are not the only intervals in this excerpt which seem to act as intermediate 

goals within the overall motion—listening carefully to the spaces between the 

consonances, we can hear the same sort of “centering” on justly tuned whole tones (9/8) 

and even on unusual intervals invoking factors of 7 like 7/5 (a augmented fourth of about 

583 cents, or hundredths of an equal-temperament semitone). As Schoenberg argued, the 

distinction between consonance and dissonance is relative, not absolute: there is a 

continuum from the most consonant intervals to the less consonant, from simple ratios to 

complex ones.26 Where we draw the line is a matter of musical training and the degree of 

attention we pay to these intervals: violinist Marc Sabat has come up with an extensive 

list of just intonation “intervals tunable by ear,” including such complex intervals as 9/7 

(435 cents).27     

                                                
26 Schoenberg, op. cit., 20-21. 
 
27 Marc Sabat, “Analysis of Tuneable Intervals on Violin and Cello (2004),” http://www.plainsound.org/, 
accessed April 15, 2008. Note that the degree of mistuning for just intervals that seems acceptable to a 
given listener seems to be at least in part a factor of musical training—the often heated arguments between 
proponents of different tuning systems often stem from the different degrees of tolerance to which each 
disputant has become accustomed. 
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 By gradually changing the interval size, Tenney sets off our perception of interval 

as an object of aesthetic contemplation. In listening, we discover the irregularities in our 

reaction to intervals, and the strange “pull” that some pure-ratio intervals exert on 

neighboring pitches.   

* * * 

 What is it, though, that makes the consonant intervals we hear in this excerpt of 

Koan correspond to the intervals with simple ratios? To the Pythagoreans, intervals with 

simple ratios were consonant because they reflected basic numerical and cosmological 

truths of the universe. Needless to say, this explanation has few adherents today, though 

we still need to explain the correspondence of simple ratios and perceived consonance: 

between ratio and sensus. The modern, psychoacoustical explanation is based on the way 

we hear the overtones of pitched sounds. 

 Until the Renaissance, interval ratios were always expressed as comparisons of string 

lengths on a monochord or comparable instrument. The discovery of the precise inverse 

relationship between string length and rate of vibration (usually attributed to Galileo 

Galilei), along with a new understanding of pitch as the perceptual correlate of periodic 

vibration rate, made it clear that the same ratios measured between string lengths also 

could be found between frequencies. The interval of the octave, for instance, could now 

be understood not only as the product of sounding strings with lengths in the ratio 2/1, 

but also as two vibrations in the air, one at twice the rate of the other. The shorter string 

(length 1, in the ratio 2/1) would have the fast vibration speed (let’s say 2x), while the 

longer string (length 2) would have the slower vibration speed (1x). Vincenzo Galilei 

(Galileo’s father) attacked the traditional equation of interval to specific ratios by 
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showing how, in different experimental setups, basic intervals like the octave could be 

produced by ratios different from the standard 2/1. For example, if one compares the 

mass of the weights which held strings taut instead of comparing string lengths, the 

octave has the ratio 4/1, not 2/1. 

 Simple integer ratios between frequencies were discovered in a natural 

phenomenon (not just as the result of human musical practices) when Marin Mersenne 

described the lower reaches of the overtone series in his Harmonie Universelle (1636-

37).28 Mersenne found that while listening closely to instrumental sounds, he could 

discern more than one pitch—not just the nominal pitch of the sound, but higher tones 

arranged in a sort of chord above this basic pitch.29 A scientific explanation soon 

followed: the vibrating body (for example, a string or the column of air in an organ pipe) 

vibrated not only along its entire length (yielding the lowest, or fundamental tone), but 

also (and simultaneously!) in halves, thirds, fourths, and so on. Because the frequencies 

of these pitches are all multiples of the same fundamental frequency, the intervals 

between them are always just intervals. In his Harmonie Universelle, Mersenne mused “it 

seems it is entirely necessary that [the string] beat the air five, four, three, and two times 

                                                
28 René Descartes and Isaac Beeckman were important influences on Mersenne’s thought, though their 
descriptions of the overtone series were not as sophisticated or complete as Mersenne’s: see H. F. Cohen, 
Quantifying Music: The Science of Music at the First Stage of the Scientific Revolution, 1580-1650 
(Dordrecht: D. Reidel, 1984): 127, 167-172, 198. 
 
29 Modern scholars of psychoacoustics often refer to the distinction between holistic listening (hearing a 
collection of partials fused into a single complex timbre) and analytical listening (“hearing out” the 
individual partials as separate entities). Trained listeners can often switch back and forth between the two 
modes of listening. For a more detailed discussion, see William Sethares, Tuning, Timbre, Spectrum, Scale, 
second ed. (London: Springer-Verlag, 2005): 25-27. 
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in the same time”30—but he quickly (though incorrectly) dismissed this idea as physically 

impossible.  

 Mersenne’s speculation was correct—though it would be a hundred years before 

scientists were able to prove it. These consecutive divisions of the vibrating body had 

their own vibration frequencies, each a multiple of the fundamental frequency—these are 

overtones, and collectively they are called the overtone series. 

 
Figure 1.3: The overtone series on C, approximated to the nearest quartertone. 
Numbers in italics indicate the pitch class in cents, with C = 0. 
 
 For example, take a vibrating string tuned to 55 Hz (Hertz, or vibrations per 

second)—the pitch of a double bass’s A string. In addition to the 55 Hz fundamental, the 

sound will contain an overtone at 110 Hz—at the interval of an octave (a 2/1 ratio) above 

the fundamental pitch. The next overtone, at 165 Hz, is an octave and a fifth above (3/1), 

followed by a double octave (4/1) at 220 Hz. The next overtone after this is in a 5/1 ratio 

with the fundamental, sounding two octaves and a just major third above: 275 Hz. 

 Despite Mersenne’s doubts, a vibrating string can simultaneously vibrate in 

multiple modes, each corresponding to some division of the string into equal parts. The 

first part of the puzzle was solved by two English scientists, William Noble and Thomas 

                                                
30 Thomas Christensen, Rameau and Musical Thought in the Enlightenment (Cambridge and New York: 
Cambridge University Press, 1993): 136. I draw here on Christensen’s research on the history of overtones 
and vibrational theory, particularly on the discussion in pages 133-168. 
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Pigot, who demonstrated the existence of nodal points—the points of stillness on a 

vibrating string—through an ingenious experiment. Noble and Pigot set up two strings, 

one long string, and one short string tuned an octave above the long string. When the 

higher string was plucked, sympathetic resonance would make the longer string sound as 

well—but the longer string would not vibrate along its whole length, but in two equal 

parts, with a still nodal point at the center. Noble and Pigot put paper riders along the 

long string—when it was set into motion, all of the riders would jump off except for 

those at the still point in the center of the string’s length.31 

 Proof that a string could vibrate in different modes was not enough to show that 

such modes could coexist—Sauveur made the essential link between nodal points (which 

he discovered independently of the Englishmen) and the overtone series: he realized that 

the string can vibrate in several different ways at the same time. Bernoulli also 

contributed to the earliest theories of overtones—he seems to have anticipated Fourier’s 

proof that sine tones in harmonic relation could compose any periodic vibration.32 Sine 

tones of varying phase and amplitude can be combined to produce any kind of periodic 

waveform. 

 The sine tone components (partials) of a complex sound are not usually clearly 

audible as individual pitches—our auditory system tends to group them together into a 

single fused pitch entity. The relative intensity of the partials determines the timbre of the 

complex tone. Various expedients have been used to make the upper partials more 

audible—these include the resonators developed by Hermann von Helmholtz in the 

nineteenth century. Another way of “hearing out” these upper partials is to use a guide 

                                                
31 Christensen, op. cit., 136. 
 
32 Christensen, op. cit., 150. 
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tone—for example, by first playing a harmonic on a guitar string (lightly touching a node 

so only an upper partial sounds) then plucking the string normally, one can hear the 

isolated harmonic as an independent entity within the complex sound.  

 Psychoacousticians explain consonance between complex tones (tones with many 

overtones or partials, as opposed to pure or sine tones) as the result of coinciding 

partials.33 When the partials of two tones match in frequency, they blend with one 

another—but when they don’t match, the adjacent partials interfere with one another, 

causing “beats” which, if powerful enough, can create a sensation of sonic “roughness.” 

Matching of partial frequencies occurs when the fundamentals of harmonic tones are in a 

simple ratio relationship: for example, if the fundamentals are in a 3/2 ratio, the partials 

will coincide at 6, 12, 18, and so on (Figure 1.4).  

2  4  6  8  10  12  14  16 18 
 3    6   9   12   15   18 etc...  
Figure 1.4: Coinciding partials between complex tones a fifth (3/2) apart 
 
 Even if the ratio between the two pitches is not perfectly tuned, the combination of 

pitches can still be heard as consonant. As Albert Bregman explains, “near misses” 

between the partials create only mild beats which aren’t perceived as discordant: 

In general, if the ratio between the two fundamentals is m:n, and m and n 
are integers, every nth harmonic of the first fundamental will correspond 
in frequency with every mth harmonic of the second. Therefore, when the 
ratio can be expressed in terms of small integers there will be many exact 
correspondences of frequencies. Even if the ratio is not exactly 2:1 or 3:2 
or another such ratio, but is near these simple ratios, the partials that 
would have the same frequency in the exactly tuned case will be quite near 
to one another in frequency. Hence the frequency of the beats between 

                                                
33 This explanation originates with Hermann von Helmholtz: see Helmholtz, trans. Alexander Ellis, On the 
Sensations of Tone. New York: Dover, 1954 [1885]: 179-197. Consonance is discussed in most books on 
acoustics and psychoacoustics: for a particularly clear explication, see Brian Moore, An Introduction to the 
Psychology of Hearing, fifth edition (Amsterdam and Boston: Academic Press, 2003). For a comparison of 
different ideas of consonance and dissonance, James Tenney’s A History of “Consonance” and 
“Dissonance” (New York: Excelsior Music Publishing, 1988) is a valuable resource. 
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corresponding harmonics will be quite near zero and will not be 
unpleasant. Such near misses, rather than exact correspondences, occur 
frequently in the equally tempered scale of modern Western instruments.34  

 
Currently, this is the most widely accepted explanation for musical consonance. The 

Pythagorean tradition in music theory has historically been associated with an abstract 

numerological cosmology: instead of relying (like Aristoxenus) on empirical evidence 

from listening (sensus), pride of place was given to purely mathematical definitions 

(ratio). Helmholtz’s theory of consonance makes it possible to preserve the Pythagorean 

interval ratios on a much firmer empirical foundation based on the psychology of hearing. 

Ratios still play a preeminent role, but not because of numerology: rather, the simple 

ratios—when applied to the complex harmonic tones of musical instruments and 

voices—create the smallest degree of interference between partials of the two tones of an 

interval. Through psychoacoustics, we can move beyond the old dichotomy of ratio and 

sensus: abstract ratios between numbers are directly linked to the visceral sensations of 

consonance and dissonance. Psychoacousticians illustrate the relative consonance of 

intervals in a diagram called a “consonance curve”—the peaks of this curve (see Figure 

1.5b) neatly match the intervals which we’ve identified as points of rest in Koan. 35 

                                                
34 Albert Bregman, Auditory Scene Analysis (Cambridge, Mass.: MIT Press, 1990): 505. The acceptance of 
such “near misses” as consonant is anathema to Pythagorean theories, which demand precise tuning of all 
ratios. Tolerance for approximation is more characteristic of an Aristoxenean, listening-based approach. 
 
35 An interesting question about the relation of consonance and the spectra of musical sounds is raised by 
the experiments of William Sethares, who uses stretched and compressed spectra to create “consonant” 
versions of traditionally dissonant intervals. By creating artificial tones in which each octave is stretched to 
a major ninth (with all other intervals adjusted similarly), Sethares creates situations where all of the 
partials of two tones coincide perfectly, though their fundamentals are separated by a “dissonant” minor 
ninth. Though Sethares’s hybrids are fascinating, I find that for most musical situations the assumption of a 
harmonic spectrum for each tone is the most useful for analysis—this reflects the tendency of music theory 
to abstract “the note” away from real-world tones, but allows us to assume similar pitch relationships even 
when the scoring of a passage is quite different. See Sethares, op. cit. 
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Figure 1.5a: Spectrogram of Koan 
 

 
Figure 1.5b: Consonance curve (Skovenborg and Nielsen, 2002)  
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 Figure 1.5a shows a spectrogram of the first four minutes of Marc Sabat’s 

recording of Koan—this excerpt begins with the fifth G-D and ends just before the arrival 

of the unison on D. In a spectrogram of a sound, the sound’s evolution in time is 

represented on the x-axis from left to right, and frequency is shown on the y-axis: low 

frequencies at the bottom, and high ones at the top. The intensity of vibrational energy at 

any frequency is indicated by shading from white to black: white means an absence of 

energy at that frequency, while black means strong energy. Shades of gray show 

intermediate gradations in intensity. On the spectrogram, we see not only the fundamental 

of each pitch, but also its partials: the harmonic partials of a complex tone appear on a 

spectrogram as a series of equally-spaced lines, reflecting the equal difference in 

frequency between them. In Figure 1.5a, the repeated pitch D and its partials are 

represented by horizontal lines, since the frequency does not change—the diagonal lines 

which cut across the D and its partials represent the glissando from G to D.   

 The just intervals which we hear as stable points in the glissando are the points in 

the spectrogram where the two sets of lines cross—for example, at the perfect fourth 

(ratio 4/3), the fourth partial of A matches the third partial of D. The interval at each 

crossing can be compared with the consonance curve taken from Skovenborg and 

Nielsen’s model of consonance for harmonic tones (Figure 1.5b)—note the 

correspondence of the simple just intervals to the points of maximum consonance.36 

Again, as Schoenberg pointed out in his Theory of Harmony, the distinction between 

consonance and dissonance is relative, not absolute. The just intervals have varying 

                                                
36 Esben Skovenborg and Søren Nielsen, “Measuring Sensory Consonance by Auditory Modelling,” 
Proceedings of the 5th International Conference on Digital Audio Effects, Hamburg, Germany, September 
26-28, 2002: 251-256. See also R. Plomp and W. J. M. Levelt, “Tonal Consonance and Critical 
Bandwidth,” Journal of the Acoustical Society of America 38 (1965): 548-560. 
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degrees of consonance, depending on the simplicity of their ratios—there’s a high degree 

of correspondence between the partials of a perfect fifth (3/2), but fewer correspondences 

between the partials of a whole tone (9/8). By looking at this excerpt in terms of ratios 

instead of only as distances, we can begin to discuss these different degrees of 

consonance and their musical possibilities. 

 Within a continuum of interval sizes, intervals defined by simple ratios stand out as 

qualitatively different from the irrational or more complex intervals between them. In his 

theoretical writings, Tenney uses the word “harmony” in a specific sense to refer to just 

this sort of qualitative difference between intervals, which is separate from absolute 

interval size measured as distance; for Tenney, as we saw, harmony is specifically “the 

aspect of music and musical perception that has to do with relations between pitches 

other than simply the relations higher/lower or up/down.”37 These “other” relations draw 

on a cognitive tendency to group together partials that are all harmonics of the same 

fundamental: what Albert Bregman terms “harmonicity”: 

There is a particular relation that can hold among a simultaneously present 
set of partials. They can all be harmonics of the same fundamental. There 
is a good deal of evidence to suggest that if they are, they will tend to be 
assigned to the same stream; that is, they will be fused and heard as a 
single sound. Let us call this the “harmonicity” principle. (232)  

 
Though Tenney is concerned with pitches and Bregman with partials, many of the 

grouping mechanisms remain the same—for example, if the fundamentals of several 

complex pitches are themselves overtones of the same fundamental, all of the overtones 

of the complex pitches will also share that fundamental.  

 The harmonicity principle suggests that any approach to musical space that 

conceives only of distance relations—“higher/lower or up/down”—will misconstrue how 
                                                
37 Tenney, “American Mavericks” interview, op. cit. 
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we perceive pitches in combination with one another. In the field of visual cognition, 

Gestalt psychologists have described a “proximity principle”: that “the closer the visual 

elements of a set are to one another, the more strongly we tend to group them 

perceptually.”38 This principle is at work when we group the nine Xs below into sets of 

three, two, and four. 

XXX  XX  XXXX 
  
In musical pitch space, something akin to the proximity principle is at work when we 

group pitches that are close in register. However, music also invokes the harmonicity 

principle: that we group pitches that belong to the same overtone series. Harmonicity 

could be perhaps be seen as a special case of the Gestalt principle of similarity, which 

states that we group objects with similar features—for example, when we group together 

the white and black dots below into separate rows. Because of a shared trait, their color, 

the black dots are grouped together rather than with the white dots, even though they are 

not closer in space. 

○○○○○○○○○ ●●●●●●●●● ○○○○○○○○○ ●●●●●●●●● 
 
Through harmonicity, the overtone series suggests a close relationship between pitches 

(analogous to visual similarity) that is not merely due to proximity. As Andrew Mead has 

pointed out, the difference between these two types of “closeness” is essential to the 

organization of tonal music. Vocally, it is easiest to move from one note to another 

nearby note—this stepwise motion reflects the “proximity” principle. However, we can 

                                                
38 Bregman, op. cit., 18-19. Both Bregman and Tenney are influenced by Gestalt psychology—Tenney’s 
META +HODOS (Lebanon, New Hampshire: Frog Peak Music, 1986) is an early attempt to translate 
Gestalt principles into music theory.  
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more easily relate notes harmonically when they are separated by larger intervals (skips) 

like the third, fifth, or octave. As Mead writes, 

the difference is suggestive with regard to musical syntax: the most closely 
related notes are not those that are easiest to get to. We are fortunate for 
this difference. Indeed, one might  argue that tonality depends on this 
difference, that Schenker’s “Chord of Nature” is very much of our nature, 
our physiology, and that the simplest motions away from it (voices 
moving by step) reflect what is physically the easiest thing for voices to 
do.39 

 
Through the principle of harmonicity, we select the just intervals as points of reference in 

the continuum of pitch space. These harmonic relationships suggest a wealth of analytical 

possibilities that are overlooked by a distance-only abstraction of pitch connections.40 

 

Fedor Tau: “Steppe Kargiraa” 

 The close relationship between the overtones of a musical sound and the familiar 

(just) intervals shared by many musical cultures is made viscerally audible in the Tuvan 

vocal style known as xöömei (also spelled höömii or khoomei or referred to as “throat 

singing”), one of the most remarkable melodic exploitations of the overtone series of a 

complex sound.41 A xöömei singer sustains a long, raspy drone, shaping his mouth and 

throat to emphasize individual partials that are already present in the vocal sound. By 

                                                
39 Mead, op. cit., 8. 
 
40 A parallel instance of simple ratios as the preferred referential points in a real number continuum is the 
representation of rhythmic durations in Western notation as simple fractions of a basic beat. Thus, we often 
transcribe even eighth or sixteenth notes for a rhythm that in real performance does not divide the beat so 
precisely (and of course no human performance produces precisely equal divisions).  The biases of the 
notational system seem to suggest that at some level we mentally represent rhythms as simple durational 
ratios—even when this does not reflect the complex timing of the actual sounding durations. 
 
41 See Theodore Levin with Valentina Süzükei. Where Rivers and Mountains Sing: Sound, Music, and 
Nomadism in Tuva and Beyond (Bloomington and Indianapolis: Indiana University Press, 2006). A related 
form of vocal performance is practiced in Tibetan Buddhist chant. 
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adjusting the vocal cavity, the singer creates different formants (peaks in the resonant 

response of a physical system which amplify vibrations in a certain frequency range): 

a harmonic whose frequency is near the peak of a formant will stand out from its 

neighbors. In xöömei singing, these formants make a single partial much louder than 

those surrounding it—the exaggerated difference in amplitude between partials keeps the 

sound from fusing into a single complex pitch, as is usual for vocal sounds. Rather, the 

emphasized partial stands out as a independent, whistle-like tone.42  

 Because the melody of a xöömei performance is built of the partials of a single 

fundamental, we can expect the intervals between pitches to be expressible as simple just 

ratios. In “Steppe Kargiraa,” recorded by the singer Fedor Tau, the melody is built on the 

8th, 9th, 10th, and 12th partials of a drone of about 66 Hz (C2+16¢): these partials are 

equivalent to the first, second, third, and fifth degrees of a major scale in just intonation. 

Figure 1.6 shows a sonogram of the three vocal phrases in this performance; numbers on 

the left side label the partials.43 

                                                
42 The acoustics of xöömei are discussed in William Hartmann’s Signals, Sound, and Sensation (Woodbury, 
New York: American Institute of Physics, 1997): 124-25. 
 
43 The recording analyzed here is commercially released on the CD Tuva: Voices from the Center of Asia, 
produced by Eduard Alexeev, Zoya Kirgiz, and Ted Levin (Smithsonian/Folkways Recordings SF40017, 
1990). 
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Figure 1.6: Sonogram of “Steppe Kargiraa”  
 
 In the sonogram, the darker shades represent greater intensity—these are what we 

hear as the melody. The fundamental (partial number 1) is relatively weak. The focus on 

the 8th, 9th, 10th, and 12th partials avoids the less familiar (to Western ears) 7th and 11th 

partials. There is a distinct perceptual bias toward hearing intervals which are composed 

of simple factors as the most stable. In many cases, the particular octave the partial 

appears in seems less important than the partial’s pitch class in determining its stability—

we can coin the term “partial class,” by analogy to pitch class, to refer to a partial under 

octave equivalence. In terms of the partial number, this will mean the lowest possible 

representation of the pitch as well as all the multiples of that number by powers of 2: 

thus, the partial class of the fundamental includes the partials 1, 2, 4, 8, 16, etc., while the 

partial class of the upper fifth would include 3, 6, 12, 24, etc. The idea that all pitches of a 

given partial class share certain harmonic qualities is confirmed in our reading of Steppe 

Kargiraa—here, the 8th partial is treated as a “tonic” for the melody, recurring at the 
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beginning and end of each phrase. We tend to experience the 8th partial as more stable 

than the seventh, even though the 7th occurs lower on the overtone series; this is because 

the 8th partial shares a partial class with the fundamental, 1, and inherits the 

fundamental’s stable, ”rooted” quality. 

 A few times in each phrase, the singer’s voice drops—on the sonogram, this 

appears as a dip in all the partials at once (the dips are circled in the sonogram). It’s 

interesting to note that even though the seventh partial isn’t used in the melody, that this 

dip very closely approximates an 8/7 interval; this is visible in the sonogram as the eighth 

partial of the voice falls to the pitch formerly occupied by the seventh. While an in-depth 

investigation of the pitch language of xöömei is beyond the scope of the present 

discussion, one can speculate that attunement to the partials of the overtone series could 

well lead a xöömei singer to an intuitive use of the seventh partial as a natural adjunct to 

the pitches of the overtone melody. (Levin notes the use of the pitch equivalent to the 

seventh harmonic in the Tuvan song “The Orphan’s Lament,” which is not performed as 

xöömei.) The extension of pitch materials to include intervals using the seventh partial 

(and beyond) is the subject of the second basic premise of this chapter. 

 

Premise 2: The principles of standard just intonation can be extended to 
include higher prime numbers. 
 
 In the recording of Steppe Kargiraa discussed above, the performer builds a 

melody by selectively emphasizing pitches in the overtone series of a sung drone—the 

performer, Fedor Tau, limits his melodic pitch material to the partials 8, 9, 10, and 12. 

When the positive integers—whether understood as partial numbers or components of 

frequency ratios—are taken as the basis of an interval system, the possibilities for pitch 
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combination are infinite, just like the set of positive integers. Throughout history, 

composers and theorists have found it necessary to impose limits on this proliferation of 

possibilities. Sometimes, the explanations offered for such limits seem arbitrary—for 

example, Johannes Kepler matched the consonant ratios of Western music to the 

geometrical shapes which can be inscribed in a circle to “prove” that all other ratios were 

dissonant—but the underlying need to control the number of acceptable intervallic ratios 

is a serious and persistent problem. In this section, I make the case that the properties of 

sensory consonance, tunability, and stability that we prize in traditional just intonation 

(with ratios containing only multiples of 2, 3, and 5) are preserved when ratios include 

multiples of higher prime numbers: 7, 11, 13, and beyond. The extension into higher 

primes is not infinite—instead, the comprehensibility of extended just intervals declines 

in proportion to the complexity of the intervals’ ratios. Still, as we shall hear in two 

musical examples, a modest extension of just intonation into higher primes can offer new 

and aurally convincing referential intervals.  

 

György Ligeti: Viola Sonata (1991-94), I. Hora Lungǎ 
 
 The first movement of Ligeti’s Sonata for Solo Viola, “Hora Lungǎ,” draws on a 

similar pitch language as the melody of “Steppe Kargiraa”—the basic pitch set of the 

piece is made up of pitches in the overtone series of F (though pitches from outside the 

overtone series are occasionally added). Figure 1.7 shows the pitches of the first six 

measures of “Hora Lungǎ.”44    

                                                
44 Note that this collection is similar to the equally-tempered “acoustic scale,” which analysts have located 
in music by composers ranging from Bartok to Messiaen. Bob Gilmore discusses this movement of the 
Viola Sonata in his article “The Climate Since Harry Partch,” Contemporary Music Review 22/1-2 (2003): 
15-23. 
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Figure 1.7: chart of pitches in “Hora Lungǎ,” mm. 1-6 
 
 We can imagine an overtone singer performing the beginning of the viola’s 

melody, building the melody from the overtones of a drone two octaves and a perfect 

fifth below the viola’s open C string. There are a few pitches in the first six measures, 

though, that the overtone singer will find that he can’t produce—the D-natural and B-flat, 

which aren’t overtones of F.  

 The D-natural (notated without any microtonal inflection), is too high to be the 

thirteenth partial, which is what one might expect given the context, a scalar rise through 

partials 8, 9, 10, 11, and 12. The thirteenth partial is 841 cents above the fundamental, 

while the unaltered D natural is 900 cents above. The 900 cent major sixth in this context 

seems more likely to be heard as a tone representation of the 27th partial (four octaves and 

906 cents above the fundamental). This might seem like a leap to a distant part of the 

overtone series—but in fact, when understood as the 3rd partial of the 3rd partial of the 3rd 

partial (3×3×3), we can see that the 27th partial is only a few small steps in harmonic 

space from the fundamental. (See the discussion of different ways of measuring distance 

in Chapter 2—the question is often how to compare the effect of a few simple steps to 

that of one complex step.) Another interpretation of the D is as a just 5/3 sixth (884 cents) 

above F, though this interpretation means that the lower note of the sixth, F, is no longer 

viewed as a fundamental at all, but as the third partial of an implied, but unheard 
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fundamental B-flat an octave and a fifth below.45 The number of plausible tone 

representations for the tempered major sixth—as the interval 13/8, 27/16, or 5/3, 

indicates the importance of context in determining how we comprehend interval meaning. 

In the Ligeti sonata, the most important contextual clue to the harmonic interpretation 

seems to be the whole step to the D from the preceding C—if we hear that whole step as 

a 9/8 major whole step (echoing the F-G whole step a fifth below), the 27th partial 

interpretation is strongest. 

 In measures 3 and 4, an uninflected B-flat temporarily takes the place of the B-

minus-49-cents of the opening pitch collection. Here, the B-flat is unambiguously a 

perfect fourth above F—but its origin cannot be found in the overtone series. Ligeti 

replaces a pitch that is an overtone of F for one that has F as its third overtone (allowing 

octave equivalence in both cases). This distinction between being and having (sein and 

haben) is essential to Hauptmann’s nineteenth-century dualist theory of harmony: he used 

this distinction to build the minor chord as a mirror image of the major. Like the diatonic 

major scale, Ligeti’s scale including the B-flat and D combines overtones of F and tones 

of which F is an overtone, without compromising the overall sense of F as tonic. (This 

type of relationship is effectively modeled by “lattices” representing just relationships, 

such as the Riemannian Tonnetz discussed in the following section.) 

* * * 

 When Western music theorists have tried to justify musical practice by reference to 

the natural overtone series, the question of where to stop has often been a vexing 

problem. If, for example, a theorist claims that the partials one to six (or the string length 

                                                
45 Since all just intervals can be found in an overtone series, each just interval implies a fundamental pitch 
equivalent to the fundamental of that series. This is discussed in more detail below on pages 51-56. 
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ratios involving those numbers) are the basis of harmony and scales, why not seven or 

eleven or seventeen? The cutoff can seem arbitrary—for example, contrary to all 

scientific evidence, Rameau claimed that the corps sonore vibrated to produce overtones 

only at the third and fifth partials, not at any other frequencies.46 

 As discussed in the introduction of this chapter, the legacy of Greek theorists in the 

Middle Ages was the Pythagorean matching of number ratios with music: the modes of 

musical practice could be constructed by the cyclical application of the interval 3/2 (the 

perfect fifth). This produced a Pythagorean tuning, in which all intervals could be 

described as ratios built of multiples of 2 and 3: see Figure 1.8, which shows both the 

ratio intervals between adjacent pitches and cent values in relation to C. Using the 

terminology introduced by composer Harry Partch in his book Genesis of a Music, we 

can refer to this as a 3-limit tuning (the highest prime number factor of all ratios is 3).47 

The Pythagorean scale includes an 81/64 ditone (408 cents, a little larger than a tempered 

major third) and the semitone 256/243, the difference between the ditone and a perfect 

fourth. 

C 9/8 D  9/8  E   256/243 F  9/8  G  9/8 A  9/8 B    256/243 C 
0  204  408  498  702  906  1110  1200 
Figure 1.8: Pythagorean tuning  
 
 Despite the counterarguments of Aristoxenus (whose work would remain highly 

relevant, especially for practical musicians), Pythagoras’s equation of musical intervals 

with the ratios built up of the numbers 1 to 4 became widely accepted as the theoretical 

underpinning of Western intonation, and dominated the theoretical landscape until the 

                                                
46 Christensen, op. cit., 155ff. 
 
47 Harry Partch, Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, second 
edition (New York: Da Capo Press, 1974). 
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fifteenth century. By then, this inherited music theory had come into serious conflict with 

compositional and performance practice. The problem was this: musicians had begun to 

treat the interval of the major third as a consonance, but in Pythagorean notation the third 

was represented by the thorny ratio 81/64 (the simplicity of an interval’s ratio is directly 

correlated with the interval’s smoothness to the ear). As early as the twelfth century, the 

British theorist Theinred of Dover (later seconded by Walter Odington) suggested that the 

simpler ratio 5/4 might be closer to that used in practice.48 The difference between the 

two intervals is easy to hear: the Pythagorean third is considerably higher than any of the 

thirds used in modern tuning (at 408 cents), and much higher than the mellow, smooth 

5/4 just third (at about 386 cents).49 The idea of allowing the number 5 to participate in 

defining interval was pushed into broader circulation though the work of Bartolomeus 

Ramis de Pareia, whose treatise Musica Practica (1482) set off a contentious debate with 

Pythagorean tuning advocates like Gaffurius.50 Figure 1.9 illustrates a just major scale on 

C: the numbers between the note names show Ramis’s monochord measurements, the 

second row shows tunings in cents. 

C      9/8 D    10/9 E    16/15  F      9/8 G    10/9 A     9/8 B    16/15 C 
0  204  386  498  702  884  1088  1200 
Figure 1.9: Just intonation major scale 
 
 Figure 1.10 offers a simpler way to visualize the tunings of this scale. The 

Pythagorean scale is a collection of seven pitches related by fifths: each fifth in the 

diagram is a step to the right. In the just intonation scale, the shaded pitches (A, E, and B) 

                                                
48 Mark Lindley, “Just Intonation,” Grove Music Online, http://www.grovemusic.com, accessed April 15, 
2008. 
 
49 The 22 cent difference between the two thirds (81/80) is called the syntonic comma. 
 
50 Lindley, op. cit. 
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are part of a different chain of fifths, related by just 5/4 third to the original chain. Thus, 

A is a just third above F, E is a just third above C, and B is a just third above G. Note that 

by allowing the higher prime limit of 5, a much simpler interval can represent the major 

third: 5/4 instead of 81/64. A parallel could be seen with the Ligeti example: using only 

factors of 2, 3, and 5, the interval of 969 cents can only be described by the very complex 

ratio representation 225/128 (C-A-sharp), but if we accept an extended just intonation 

system including multiples of 7, the interval 969 can be understood as the much simpler 

ratio 7/4. What was complex becomes simple, though at the cost of allowing higher 

primes: this theme will recur throughout this study (see especially the discussion of the 

second preference rule in Chapter 2). 

Pythagorean: 
 F C G D A E B 
Just: 
A E B 
F C G D 
Figure 1.10: Comparison of Pythagorean and just diatonic scales 
 
 Introducing a new axis of thirds and allowing both axes to extend indefinitely 

results in a figure called the Tonnetz (see Figure 1.11); this illustration of just-intonation 

relationships based on 3 and 5 is best known in its application by nineteenth-century 

German theorists like Oettingen and Riemann.51 The Tonnetz arranges the just intonation 

scale of Ramis de Pareia into a two-dimensional grid, where horizontal steps represent 

3/2 perfect fifths, and vertical steps represent just 5/4 major thirds. Numbers below each 

note name show its pitch class in cents relative to C = 0. 

                                                
51 The historical origins of the Tonnetz are explored in Richard Cohn’s “Introduction to Neo-Riemannian 
Theory: A Survey and a Historical Perspective,” Journal of Music Theory 42/2 (1997): 167-180. “Neo-
Riemannian” theory, the mathematically formalized adaptation of Tonnetze to equal-temperament rather 
than just intonation, has been a much-discussed subfield of theoretical research in the last twenty years. See 
also Kevin Mooney, “The ‘Table of Relations’ and Music Psychology in Hugo Riemann’s Harmonic 
Theory.” Ph.D. diss., Columbia University, 1996. 
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F#  C#  G#  D#  A#  E#  B#  Fx 
568  70  772  274  976  478  1180 682 
 
D  A  E  B  F#  C#  G#  D# 
182  884  386  1088 590  92  794  296 
 
B  F  C  G  D  A  E  B    
996  498  0  702  204  906  408  1110 
 
G  D  A  E  B  F  C  G 
610  112  814  316  1018 520  22  724 
Figure 1.11: Just intonation Tonnetz 
 
Note that the just major scale occupies a small region of a potentially infinite fabric of 

just intervals. Recent “neo-Riemannian” theorists have explored a tempered version of 

the Tonnetz, in which each dimension returns to its starting point, curling the plane of the 

Tonnetz into a doughnut-shaped torus. In the small excerpt of the just intonation Tonnetz 

illustrated above, there are several different versions of some pitch names: for example A 

(906 cents) and A (884 cents). These pitches are separated by the syntonic comma 81/80, 

an interval of approximately 21.5 cents. The syntonic comma is the difference between 

the 906 cent A (four perfect fifths above F) and the 884 cent A (a just major third above 

F). (The need for two versions of certain pitches to assure just tuning in simple tonal 

progressions led to innovative keyboard designs such as the sixteenth-century composer 

and theorist Nicola Vicentino’s archicembalo with thirty-six keys to the octave.) 

 

La Monte Young: The Well-Tuned Piano (1964-) 
 
 La Monte Young’s epic piano solo The Well-Tuned Piano extends the emphasis on 

the “out-of-tune” upper partials heard in Ligeti’s Viola Sonata to a complex tuning 

system based entirely on the intervals 7/4 (the flat “septimal” minor seventh) and 3/2 (the 
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perfect fifth).52 The melodic intervals of the sonata are abstracted to build a pitch lattice 

whose geography Young explores over the course of a carefully-planned five-hour 

improvisation. The title’s playful reference to Bach’s Well-Tempered Keyboard draws 

attention to an important distinction: Young’s tuning is a just tuning, without the 

compromises inherent to any tempered system.   

 The Well-Tuned Piano tuning takes as its theoretical departure point the Tonnetz of 

Figure 1.11. Young professes a dislike for the intervals based on the integer five (Gann 

135); in his tuning lattice for The Well-Tuned Piano, he replaces the 5/4 major third with 

the 7/4 septimal minor seventh.53 Just as the just diatonic and chromatic scales can be 

understood as regions within an infinite harmonic fabric, Young’s twelve-note scale is a 

subset of the harmonic space defined by 7 and 3. The replacement of 5 by 7 gives the 

tuning an exotic quality, as the unusual intervals whose ratios include the integer 7 (7/4, 

7/6, 9/7, etc.) mingle with the clearly ringing perfect fifths—which are subtly different 

from the slightly smaller (by two cents) fifths of standard twelve-tone equal 

temperament. Figure 1.12 diagrams Young’s tuning—the numbers beneath the notes 

indicate the pitch class in cents (based on A 440 Hz = 900 cents). The up and down 

arrows show a deviation from the equal-tempered version of the pitch class by 

approximately 31 cents (the difference between an equal-tempered and septimal minor 

seventh)—thus, the interval D to C⇓  is 1000 cents (D to C) minus 31 cents, or 969 cents. 

                                                
52 My comments on The Well Tuned Piano in this section draw extensively on Kyle Gann’s article, “La 
Monte Young’s The Well-Tuned Piano,” Perspectives of New Music 31/1 (Winter, 1993), 134-162.  Gann 
was the first musicologist to reconstruct the details of Young’s tuning, which the composer had kept secret 
since the 1960s.   
 
53 By using 7/4 instead of 5/4 rather than in addition to it, Young avoids the need to move to a three-
dimensional Tonnetz. For more on multidimensional Tonnetze, see my discussion of harmonic space 
models devised by James Tenney and Ben Johnston in Chapter 3, and also Edward Gollin, “Some Aspects 
of Three-Dimensional Tonnetze,” Journal of Music Theory 42/2 (1998): 195-206.  
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The relationship of all the pitches by intervals of 3/2 or 7/4 means that each pitch can be 

understood as an overtone, however distant, of the pitch D⇑; numbers in parentheses 

show the partial number of each pitch, based on D⇑=1.54   

B⇓  F⇓  C⇓  G⇓ 
963  465  1167  669  
(49)  (147)  (441)  (1323) 
 
C  G  D  A  E 
1194  696  198  900  402 
(7)   (21)  (63)  (189)  (567) 
 
D⇑  A⇑  E⇑ 
225  927  429 
(1)  (3)  (9) 
Figure 1.12: La Monte Young’s Well-Tuned Piano pitch lattice 
 

D⇑ E E⇑ F⇓ G⇓ G A A⇑ B⇓  C⇓ C D 

225 402 429 465 669 696 900 927 963 1167 1194  198 
Figure 1.13: Well-Tuned Piano “chromatic scale” 
 
 Figure 1.13 arranges the pitches in scalar order (the cents values refer to pitch 

classes, which is why the final D has a lower number than the C which precedes it). 

Compared to the nearly even intervals of the 5-limit chromatic scale, consecutive 

intervals in this “chromatic” scale vary greatly in size, ranging from 27 cents to 204 cents 

(Gann, 137). In practice, each pitch class is mapped onto one of the keys of the piano—

Young devises this mapping so that pitches on each axis of fifths are related by fifths on 

the keyboard (Figure 1.14). The result, though, is that intervals on the vertical (7/4) axis 

are played on the keyboard as spans of either a major sixth or minor seventh. To sidestep 

this inconsistency, I will refer to all pitches by their actual sound, as in Figure 1.12 and 

1.13, not by their keyboard mapping (as in the transcriptions of Gann’s article). 

                                                
54 Though Young’s approach (like all just intonation) can be understood as expressing an overtone-series 
structure, his reliance on octave equivalence separates his theory from any specifically “spectral” 
tendencies. Young is less interested in replicating the overtones of natural sounds than creating a grid of 
audible just interval relationships. 
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B  F#  C#  G# 
963  465  1167  669  
 
C  G  D  A  E 
1194  696  198  900  402 
 
E  B  F 
225  927  429 
Figure 1.14: Keyboard mapping (after Gann) 
 
 Young’s tuning is replicated in all the registers of the piano—as a result, the 

overtone-based relationships are freed from their usual connection to register. For 

example, the interval from D⇑  to F⇓  (1 to 147) need not be arranged with the D⇑  

as a fundamental, and the F⇓  as the 147th partial seven octaves and 240 cents above. 

Rather, the pitches can be in the same octave—a 147/128 interval of just 240 cents—or 

even inverted with the F⇓  lower than the D⇑ , as a 960 cent interval, 256/147.   

 How do we hear such complex intervals? Is this relationship simply too complex to 

comprehend as a just interval in the same way that we immediately apprehend ratios like 

4/3 or even 11/8? And aren’t we likely to hear the interval of 240 or 960 cents as 

representing a far simpler integer ratio, slightly out of tune—8/7 (231 cents) or 7/4 (969 

cents)? These questions are best answered, I think, by reference to the context in which 

the interval occurs—context is of utmost importance in determining our tone 

representation of a given interval. If we hear the interval F⇓-D⇑  with no other sonic 

information, then we’re most likely to understand it as representing the 7/4 septimal 

minor seventh—or even an out-of-tune minor seventh from a more standard five-limit 

just tuning (16/9, or 996 cents) for example, even further out of tune. But the simple 

intervallic building blocks in Young’s tuning can combine to lead us securely into very 

distant harmonic territory—we have to negotiate two 7/4 intervals and one 3/2 to reach 

the F⇓  from the D⇑; but if these intervals are introduced carefully, it may be possible to 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—46—   

follow the path on the harmonic lattice from 1 up to 147 through the intermediate points. 

The power of contextual relations makes questionable any absolute line limiting the 

perceptibility of complex intervals.  

 Young rarely demands that we immediately relate such distant points in the 

tuning—and when he does, he often connects them in such a way that the intermediate 

points from one to the other are obvious. For an example of his way of using these 

intervals musically, let’s turn to two excerpts from the opening of the piece, during which 

Young makes a very gradual transition from his “Opening Chord” to the “Magic Chord” 

(these chords and their labels are identified in Gann’s article).55 

 The opening chord is the subject of extended improvisation for almost ten 

minutes—the transcription in Figure 1.15 shows the first two minutes. This transcription 

includes the beginning of what Young calls the “Theme of the Dawn of Eternal Time”—

all of the major sections and themes of the piece receive titles, ranging from the mundane 

“Opening Chord” to the poetic “The Goddess of the Caverns Under the Pools.” This 

section strongly projects the tonal center D⇑, which (as noted above) is the theoretical 

fundamental for the entire tuning system. Its root status is strongly supported by the A⇑ a 

fifth above and the tonic-dominant effect of the alternating D⇑ and A⇑ in the lower 

voice. (The idea of rootedness will be explored in more detail in the next section.) In this 

context, C is associated strongly with D⇑ as a natural seventh—an apparently consonant 

                                                
55 As the work has no fixed score, the analytical notes which follow are based on the five CD Gramavision 
recording of a performance on October 25, 1981 (Gramavision 18-8701-1). This is the same recording 
addressed by Gann in his groundbreaking article. A DVD video recording, which combines Young’s 
performance with a light installation by Marion Zazeela, was released in 2002 by Young’s MELA 
Foundation: the complete title is The Well-Tuned Piano in The Magenta Lights (87 V 10 6:43:00 PM –87 V 
11 01:07:45 AM NYC) (Catalog number JD 002). 
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tone that does not call for a resolution. Large 9/7 major thirds and 8/7 “whole steps” 

appear melodically. 

 

Figure 1.15: Opening of The Well-Tuned Piano, 0'00"-1'50" 
 
 The small area of tonal pitch space described by the four pitch classes of the 

opening chord is expanded by the addition of B-flat⇓ and D at 9'38": see Figure 1.16 for 

a transcription. Figure 1.17 illustrates both the opening set of four pitches and the 

expanded set of six in their lattice configuration. After more than nine minutes devoted to 

the opening chord, the introduction of the 9/7 third B-flat⇓-D is startling in its novelty. 

As we listen on, ways that these new pitches might fit into the harmony begin to become 

apparent. In size, this third matches the C-E⇑ third that has appeared frequently—the new 

third, however, is separated by an unusual interval of 231 cents (8/7) from C-E⇑. This 

reflects a move of one vertical step on the pitch lattice—a move along the 7 axis.  

 

Figure 1.16: Introduction of new pitches B⇓  and D, 9'15"-9'58" 
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 The B-flat⇓ is removed from D⇑ by two steps on the 7 axis—thus, in one sense we 

can only reach the B-flat⇓ “through” C. Another way of putting this is to observe that the 

integer 49 which represents B-flat⇓ has only one factorization: 7 x 7. (A comparable case 

on the 5/3 lattice is Rameau’s enharmonic quintuple proportion 1:5:25 or C-E-G-sharp; 

the G-sharp can be related to C only through the intermediate E.) The two new pitches, 

however, come very close to simpler just intervals—it is conceivable that we could hear 

the B-flat⇓ as an out-of-tune unison with A⇑ or an out-of-tune fifth above D⇑ (in both 

cases, 49/48 or 36 cents sharp), or the D as a near unison/octave with D⇑ (separated by 

only 64/63 or 27 cents). Whether the new pitches are heard as representing the complex 

ratios of 49/32 and 63/32 in relation to the fundamental D⇑ depends largely on musical 

context: in this case, Young offers enough parallels between the new pitches and those 

we’ve already heard to allow the ear to make these esoteric connections. The complex 

intervals are convincingly broken down into simpler steps of 3/2 and 7/4. 
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        B⇓    
        963   
        (49)   
 
C        C    D  
1194        1194    198  
(7)         (7)     (63)  
 
D⇑  A⇑  E⇑    D⇑  A⇑  E⇑ 
225  927  429    225  927  429 
(1)  (3)  (9)    (1)  (3)  (9) 
 
Figure 1.17: Lattice representations of pitch collections in Figures 1.15 and 1.16 
 
 A closely-related tuning has been designed by Young’s student Michael Harrison, a 

fellow disciple of Pandit Pran Nath and the only pianist other than Young to perform the 

Well-Tuned Piano. Like Young, Harrison shuns the thirds and sixths based on 5, and uses 

only perfect fifths and natural sevenths in his tuning matrix (see Figure 1.18). 

E ⇓  B ⇓  F⇓  C⇓  G ⇓  

267 969 471 1173 675 
 
F C G D A E B 
498 0 702 204 906 408 1110 
Figure 1.18: Michael Harrison’s “Revelation” tuning 
 
 Harrison is particularly interested in the smallest intervals available in this tuning—

what he terms the “celestial commas” between F⇓—F, C⇓—C, and G⇓—G. When 

sounded simultaneously, these intervals of 64/63 (27 cents) produce complex timbres and 

compelling beating patterns: Harrison is interested as much in the pure sonic quality of 

these just intervals as their syntactical meaning as rationally derived pitches in an 

extended just intonation scale.56 

                                                
56 Harrison describes this tuning in a program note for his solo piano work Revelation (see 
http://www.michaelharrison.com/revelation-program-notes.html (accessed April 15, 2008). His interest in 
the timbral effects of commas aligns Harrison with the type of microtonality Georg Friedrich Haas defines 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—50—   

Premise 3: Each just interval implies a fundamental or root, and a specific 
closely-related harmonic domain based on the overtones of that 
fundamental. 
 
 In the previous sections, we’ve explored how just intervals (whether within or 

beyond the traditional five-limit) can serve as referential intervals in a variety of styles, 

and offer such musically desirable qualities as smoothness and stability. An additional 

property of just intervals is their tendency to imply a root—this is essential to common 

practice tonal music, and is a property of ratio intervals which is lacking in the atonal 

world where interval is conceived purely as distance.  

 Rootedness is the basis of root our musical intuition that when we hear the pitches 

C and E, they not only “belong together” (as an instance of the just major third), but also 

share a common root of C. To the concept of rootedness we can add the idea of harmonic 

relatedness: that intervals sharing a root implication can be effectively combined with one 

another: for example, because like C-E, C-G implies a root of C, it can be combined with 

C-E to create a triad with similar harmonic meaning to either interval on its own. An 

effect of rootedness is that we group pitches together which can fit into the same 

overtone series: this suggests a mechanism of “harmonic templates” supported by the 

research of Albert Bregman and Ernst Terhardt. Pitches fitting into the same harmonic 

template will be grouped together in our aural perceptions.  

 In our discussion of Koan, we saw how the overtone series of a single complex 

sound had deep implications for the consonance or dissonance of pairs of complex 

sounds. In the following examples—Lucier’s Music on a Long Thin Wire and Tenney’s 

string quartet version of Koan—we will see some ways that composers have exploited the 

                                                                                                                                            
as Klangspaltung or tone-splitting: see Haas, “Mikrotonalitäten,” in Musik der anderen Tradition: 
Mikrotonale Tonwelten (Munich: Musik-Konzepte, Edition Text+Kritik, 2003), 59-65.  
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overtone series, and our perceptual bias for grouping pitches related by simple integer 

ratios. Our discussion will begin with the simplest, most “natural” use of the overtone 

series, Lucier’s Music on a Long Thin Wire, and progress to the more abstract treatment 

of the overtone series in Koan for String Quartet. 

 

Alvin Lucier: Music on a Long Thin Wire (1977) 
 
 Though overtones play a central role in the way we understand consonance 

between complex tones, listeners usually aren’t aware of the individual overtones of a 

sound. Overtones combine to create the perceived overall timbre of a sound, but are not 

recognized as separate entities. Alvin Lucier’s 1977 sound installation Music on a Long 

Thin Wire plays on the ambiguous nature of overtones—are they independent “voices” or 

merely components of a larger whole? The installation makes the upper overtones of a 

vibrating string clearly and distinctly audible, even as we perceive them fitting into an 

overall timbral “harmony.” 

  Lucier has “performed” the piece in many different versions, but the basic premise 

remains the same. A electrically-conductive wire up to thirty meters long is stretched 

over two bridges, with its ends attached to the electrical outputs of a sine-wave oscillator. 

A magnet is placed at one end of the wire so that, as the oscillator varies the current in the 

wire, electromagnetic induction causes the wire to vibrate. The sound of the vibrating 

wire is picked up by microphones and amplified through loudspeakers. 

 This setup acts as an aural microscope, magnifying the partials of the vibrating 

string so that they can be clearly heard. The long wire is sensitive to tiny variations in the 

space and to subtle changes in the electromagnetic field—as a result, the string drifts 
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from one mode of vibration to another, creating changes in the volume of the partials of 

the sound. In his original conception of the piece, Lucier played the wire as an 

instrument, changing the frequency and amplitude of the sine-wave oscillator to build 

musical “phrases” in the wire’s response. In subsequent performances, though, he found 

such obvious manipulations too predictable and artificial. Instead, he set up the piece 

with a given oscillator frequency, then simply allowed the string to react on its own—this 

aesthetic is summed up by the title of his essay, “Careful Listening is More Important 

than Making Things Happen.” 

Now, I made a recording of Music on a Long Thin Wire and had set it up 
in a beautiful space in New York, the U. S. Custom House, that has a huge 
dome on the top floor. I had stretched the wire about thirty meters, which 
is about as long as I’ve ever stretched it, and had decided that I wasn’t 
going to perform it. I would be true to my ideal. I wouldn’t change 
anything once I had tuned it and set the volume level. I would simply see 
what happened. I promised myself that for a couple of reasons. One, is that 
you want to be true to your idea, otherwise there’s no integrity to your 
work. The other is that I knew it wouldn’t sound right. If you change 
something in the middle of a recording, it’s usually a mistake.57 

 
* * * 

 Listening to Lucier’s recording of Music on a Long Thin Wire offers new insights 

into the way we hear simultaneous pitch combinations. James Tenney’s Koan showed us 

how two complex tones in a simple frequency ratio are perceived as consonant—Lucier’s 

piece “zooms in” to focus on the partials of a single complex tone. Because all of the 

individual overtones we hear in Music on a Long Thin Wire are multiples of the same 

fundamental frequency, the intervals between those overtones are always just, rational 

intervals—the same just intervals that we hear as consonances when they’re played with 

complex tones. This is the first of many parallels between the sound world within a single 
                                                
57 Alvin Lucier. “There are all these things happening: notes on installations.”  In Reflections: Interviews, 
Scores, Writings (Cologne: Musiktexte, 1995): 528-530. 
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note (that note’s overtone structure) and the sound world of many notes in combination (a 

chord).  

 When we hear these just intervals between the partials of a complex tone, sensory 

mechanisms interpret the partials as part of the same entity—without being conscious of 

it, we group the partials together as emanating from the same source, and extrapolate 

from their frequencies a likely fundamental frequency for that source. For example, if we 

hear two simultaneous pure tones at 440 and 550 Hz (a just major third from A to C#), 

we’re likely to hear them as the fourth and fifth partials of a fundamental of 110 Hz (the 

largest common denominator of the two frequencies). This phenomenon is what makes it 

possible for the tiny speaker of a telephone earpiece to convincingly reproduce a low bass 

voice: even though the speaker is too small to convey the voice’s fundamental, it can 

transmit its upper partials—from this data, we mentally recreate the low frequency of the 

fundamental.58 Psychoacousticians suggest that we’ve developed a mental template of the 

relationships between partials of a complex tone from our frequent encounters with such 

sounds—and that this template is used to make sense of incoming auditory data.59 When 

we find a template that matches the partials that we hear, we perceive the fundamental 

pitch of the sound. As acoustician William Hartmann explains, 

                                                
58 The telephone can’t provide frequencies below about 220 Hz, so whenever we hear a voice on the 
telephone with a perceived pitch below 220 Hz (the A below middle C), we are using our ability to provide 
a missing fundamental.  This phenomenon can even occur when the harmonics of a sound are presented 
separately to each ear: see A. J. M. Houtsma and J. L. Goldstein, “The Central Origin of the Pitch of 
Complex Tones: Evidence from Musical Interval Recognition,” Journal of the Acoustical Society of 
America 51 (1972): 520-529. This suggests that the production of the missing fundamental happens not 
physiologically within either of the ears but rather in the central nervous system. For a more detailed 
treatment of this topic, see Stanley A. Gelfand, Hearing: An Introduction to Psychological and 
Physiological Acoustics, New York: Marcel Dekker, 4th ed. 2004: 378-79. 
 
59 Such templates are crucial in separating out simultaneous notes—if we hear two violins playing different 
notes at the same time, we separate them from one another by subconsciously matching them to different 
templates. 
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Modern theories of pitch perception are foremost pattern matching 
theories. They assume that the brain has stored a template for the spectrum 
of a harmonic tone, and that it attempts to fit the template to the neurally 
resolved harmonics of a tone. Given the ubiquity of periodic tones in the 
everyday environment, a template for the harmonic spectrum is a 
reasonable hypothesis. [...] The model can be made quantitative by 
establishing tolerances for the template for accepting harmonics into an 
entity.60  

 
It’s important to note that the harmonics between partials do not need to be precisely in 

tune to fit into a single complex “entity”—the tolerance that Hartmann mentions will be 

examined more closely later in this chapter. The effects of this template matching can be 

clearly demonstrated through an analysis of an excerpt of Music on a Long Thin Wire. 

Figure 1.19 shows a spectrogram of the first 90 seconds of Lucier’s U. S. Custom House 

installation—this excerpt is from the third of four versions of the piece on his 1980 

recording.    

 

                                                
60 Hartmann, op. cit., 135. 
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Figure 1.19: Spectrogram of Music on a Long Thin Wire, track 3, 0'00" to 1'30" 
 
 As the excerpt begins, we hear most prominently partials at approximately 205 and 

410 Hz—the upper partial is twice the frequency of the lower, an interval of an octave 

above. The octave between the pitches strongly suggests a template which takes these 

frequencies as the first and second partials of a complex tone with a fundamental at 205 

Hz—a slightly flat A-flat. However, there’s also some sonic evidence against this 

interpretation: the faint but still perceptible partial at around 274 Hz. This partial doesn’t 

fit into the template based on a 205 Hz fundamental—though it’s not loud enough to 

completely undermine that interpretation. The result, to my ear, is a tense, unstable A-

flat—the 274 Hz partial (approximately a fourth above the 205 partial) destabilizes the 

assumed fundamental without suggesting a new one. 

 About 45 seconds into the excerpt, the harmony undergoes a sudden change—the 

harmony is joined by a lower pitch and becomes much richer, while at the same time a 
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series of beats begins to interrupt the sound. (The beats are most likely due to an 

interference pattern between the resonant frequency of the string and that of the sine 

wave oscillator driving the vibration.) What’s striking here is that the new harmony 

contrasts with our assumed A-flat fundamental—instead, it seems to be based on the D-

flat a fifth below (the effect is not unlike a V to I cadence in tonal music).  

 As the string shifts into a new mode of vibration, different partials are emphasized, 

particularly at 137 and 274 Hz. The partials which we’d interpreted as the first and 

second of an A-flat fundamental—for convenience, I’ll notate this hearing as A-

flat(1:2)—turn out to be the third and sixth partials of a Db fundamental, part of the chord 

D-flat(2:3:4:6). This change in interpretation is illustrated schematically in Figure 1.20. 

410———————————————————————————————  
    
   (274) - - - - - - - - - - - - - - - - 274—————————————— 
205——————————————————————————————— 
       137———————————————— 
 
A-flat(1:2)      D-flat(2:3:4:6)  
Figure 1.20: Templates and fundamentals in Music on a Long Thin Wire 
 
The continuously sounding pitches at 205 and 410 Hz are reinterpreted to fit a new 

context—as evidence accumulates which is better explained by a new template, our 

hearing process automatically shifts its perceived fundamental to match the new data. 

* * * 

 The determination of a root in this excerpt from Music on a Long Thin Wire 

depends on a constant comparison of potential harmonic templates. Psychoacoustician 

Ernst Terhardt has suggested that our strategy of grouping together pitches from the same 

overtone series is acquired from repeated experience with harmonic sounds, particularly 

speech (Terhardt, “Pitch, Consonance, and Harmony,” 1068). In the mid-1970s, Terhardt 
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developed an algorithm predicting the virtual pitch of a set of partials: virtual pitch is the 

pitch we perceive for a complex tone (as opposed to spectral pitch, the pitch we hear for 

any of the pure wave components of the sound). As in our example from Music on a 

Long Thin Wire, Terhardt’s algorithm is based on the principle that the equal spacing (in 

terms of frequencies) of the partials of a harmonic tone allow us to determine the virtual 

pitch, even when the fundamental itself is not sounding. When extended from sets of 

partials to actual musical pitches, his theory offers a suggestive model for the way we 

might find root implications for complex sonorities.61 

 Terhardt’s approach is based on two steps: first, the analysis of a complex sound 

for “determinant spectral components”—the prominent frequency components which 

contribute to the overall perception of the sound; second, the deduction of virtual pitch or 

fundamental frequency by subharmonic matching, expressed through an algorithm.62 

Deducing the determinant spectral components is a fairly complex process requiring 

significant attention to the irregularities and complexities of the physiology of the hearing 

system—more relevant to our current research is the second part of Terhardt’s process. 

As Terhardt himself points out, it is often sufficient to determine the “nominal virtual 

                                                
61 Terhardt himself has explored some of these musical implications in the articles “Pitch, Consonance, and 
Harmony,” Journal of the Acoustical Society of America 55 (1974), 1061-1070 and “The Concept of 
Musical Consonance: A Link between Music and Psychoacoustics,” Music Perception 1 (1984), 276-295. 
See also the work of Richard Parncutt, which adapts Terhardt’s work for musical applications. Parncutt 
develops a model which “predicts the number of audible harmonics in complex tones, the multiplicity and 
tonalness (and hence consonance ) of musical tone simultaneities (tones, dyads, and chords), the various 
possible pitches of simultaneities and the roots of chords.” Richard Parncutt,  Harmony: A 
Psychoacoustical Approach (Berlin: Springer-Verlag, 1989): 135. See also Richard Parncutt and Hans 
Strasburger,  “Applying Psychoacoustics in Composition: ‘Harmonic’ Progressions of ‘Nonharmonic’ 
Sonorities.” Perspectives of New Music 32/2 (Summer 1994), 88-129 and “Revision of Terhardt’s 
Psychoacoustical Algorithm of the Root(s) of a Musical Chord.” Music Perception 6/1 (1988), 65-94. 
Parncutt’s research, particularly the 1988 article, has had a strong influence on Olli Väisälä’s research, 
which is discussed in connection with Premise 4 below.  
 
62 Ernst Terhardt, “Calculating Virtual Pitch,” Hearing Research 1 (1979): 155-182. 
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pitch,” ignoring nonlinearities in the hearing system—this nominal virtual pitch is in 

most circumstances very close to the real one. 

 The basics of Terhardt’s algorithm can be expressed in two principles—these are 

quoted here in full: 

(a) In first approximation, virtual pitch is specified by any small pitch 
interval (small region) which comprises at least two subharmonic pitch 
values of different determinant spectral pitches.  
(b) The precise virtual-pitch magnitude is specified by that subharmonic 
pitch magnitude within the crucial interval which pertains to the most 
determinant spectral pitch.63 

 
Terhardt’s illustration is a complex tone made up of three partials, at 520, 620, and 720 

Hz. (520 Hz = C5-11¢, 620 = E-flat5-6¢, 720 = F5+53¢). Experimental evidence shows 

that we hear the virtual pitch of this complex not at 20 Hz—the frequency which is a 

common factor of each component—but rather at 104 Hz. Terhardt’s model also gives 

this result, based on a comparison of subharmonics. For each determinant spectral pitch 

520, 620 and 720, Terhardt determines all of the subharmonics of the tone (see Figure 

1.21). This is not the same as invoking a dubious “subharmonic series” like nineteenth-

century dualist theorists—a better way of understanding this table is that each 

subharmonic represents a potential fundamental for which the determinant spectral pitch 

is an upper partial. Thus, 520 can be the second partial of 260, the third of 173.3, the 

fourth of 130, etc. In its “first approximation,” the virtual pitch extends over the region 

where subharmonics of the determinants fall within a small frequency band—that is, a 

small band of frequencies which includes fundamentals for each of the determinants 

understood as upper partials. Here, the range from 102.9 to 104.0 approximates a virtual 

pitch for which 520 is the fifth partial, 620 is the sixth, and 720 is the seventh. Terhardt 

                                                
63 Ibid., 168-169. 



Chapter 1: Basic Premises 

—59—  

notes that in some cases, not all of the determinant pitches will have close 

subharmonics—the coincidence of just two is sufficient to calculate virtual pitch, though 

interpretations where more subharmonics coincide are preferred. 

subharmonic number    
1 520.0 620.0 720.0 
2 260.0 310.0 360.0 
3 173.3 206.7 240.0 
4 130.0 155.0 180.0 
5 104.0 124.0 144.0 
6 86.7 103.3 120.0 
7 74.3 88.6 102.9 
8 65.0 77.5 90.0 

Figure 1.21: Table of subharmonics for frequencies 520, 620, and 720 
 
 To more specifically determine the virtual pitch, we must select the subharmonic 

which belongs to the “most determinant” of the three spectral pitches 520, 620, and 720. 

In general, the lowest of the pitches is taken as most relevant for the determination of 

virtual pitch: thus here the virtual pitch is 104 Hz, or 520 Hz/4.  

 In some cases, there will be more than one cluster of subharmonics which might 

serve as a virtual pitch. In this case, Terhardt offers some criteria by which one is likely 

to emerge as the perceived fundamental: 

1) the most determinant pitch will have a subharmonic that falls in the “integrating 

interval [the pitch range of “first approximation” described above] comprising the 

greatest number of near coincidences”—thus we would prefer a virtual pitch which is 

close to a subharmonic of all three pitches over one which approximates subharmonics of 

just two. 

2) we choose a virtual pitch that corresponds to the smallest subharmonic number—thus, 

the highest virtual pitch, with the determinant pitches heard as the lowest possible 

partials. 
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3) we favor the virtual pitch with the smallest integrating interval—that is, the 

fundamental where the subharmonics cluster most tightly together.64 

Note that this approach has a built-in degree of “tolerance”—this is what leads us to 

accept 104 Hz as the virtual fundamental, even though is not precisely a divisor of 620 or 

720, but just an approximation. Criteria 2 and 3 often work against one another—in many 

cases, one will find a very tight cluster of subharmonics only in the high subharmonic 

numbers. If we were extremely strict about what constituted “close,” accepting only an 

exact match, we would have to extend the table above to find 20 Hz as a fundamental 

with 520 as the 26th partial, 620 as the 31st, and 720 as the 36th (Figure 1.22). 

subharmonic number    
1 520.0 620.0 720.0 
2 260.0 310.0 360.0 
3 173.3 206.7 240.0 
4 130.0 155.0 180.0 
5 104.0 124.0 144.0 
6 86.7 103.3 120.0 
7 74.3 88.6 102.9 
8 65.0 77.5 90.0 
... ... ... ... 

26 20.0 23.8 27.7 
27 19.3 23.0 26.7 
28 18.6 22.1 25.7 
29 17.9 21.4 24.8 
30 17.3 20.7 24.0 
31 16.8 20.0 23.2 
32 16.3 19.4 22.5 
33 15.8 18.8 21.8 
34 15.3 18.2 21.2 
35 14.9 17.7 20.6 
36 14.4 17.2 20.0 

Figure 1.22: Expanded table of subharmonics, showing common factor of 20.0 
 
 Terhardt typically avoids virtual pitches which demand that the components be 

heard as extremely high harmonics: as he notes, “there does not exist a sharp boundary 

toward higher harmonic numbers but rather a decreasing probability of the harmonies to 
                                                
64 Ibid., 169. 
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be, relevant which approaches zero at about the 20th harmonic” (170). Of particular 

interest, then, is the way that “close” is defined. Terhardt is willing to let this value vary, 

depending on the application and the type of results desired—his general description is 

that this “integrating interval” is “the pitch interval in which slightly different pitches 

perceptually fuse.” This can be defined as a percentage of the frequency of the 

subharmonics—other researchers have suggested that the “mesh size of the hypothetical 

‘harmonic sieve’ for pitch is about ±2%-3% percent” or about a quartertone.65 For a 

strongly pitched, harmonic signal, one might demand greater precision, with a smaller 

tolerance value—for pitches of noisier, less harmonic sounds, a higher degree of 

tolerance could be permitted. In closing, Terhardt describes how the algorithm can 

accurately find the root of a major chord from a spectral analysis—this promising 

analytical possibility will be explored in greater depth in Chapter 2. 

 Terhardt’s research offers support to my premise that in addition to a root, each just 

interval implies a domain of related pitches—these are exactly those pitches which do not 

change the root assignment or apparent tonal meaning of any of the existing pitches when 

added to the input set. This kind of harmonic implication is the basis of James Tenney’s 

Koan for String Quartet. 

 

James Tenney: Koan for String Quartet (1984) 

 In most of the examples we’ve looked at so far, the musical material has focused on 

the overtones of a single fundamental pitch—whether literally, as in “Steppe Kargiraa” or 

in a more abstract sense, as in The Well-Tuned Piano, where every pitch can be 

                                                
65 Brian Moore, Brian Glasberg, and Robert Peters, “Thresholds for Hearing Mistuned Partials as Separate 
Tones in Harmonic Complexes,” Journal of the Acoustical Society of America 80 (1986), 479-483. 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—62—   

understood as an overtone (however distant) of the generating D⇑ . The exception is 

Tenney’s Koan, which, in the course of its glissando through different interval sizes, 

constantly recasts the violin’s two pitches as overtones of different implied fundamentals. 

We will return to Tenney’s Koan, this time in his 1984 reworking of the piece for string 

quartet. Here, the quartet’s first violin plays a version of the original 1971 piece, but the 

other instruments provide a “harmonic meaning” for each of its microtonal intervals, by 

adding what Tenney describes as “a complex ‘chord “progression’ on various roots or 

fundamentals.”66 The implied fundamentals are made explicit by the addition of pitches 

confirming and elaborating the fundamentals and their overtones. 

 In the years between the composition of Koan for solo violin and Koan for String 

Quartet, Tenney became deeply interested in questions of harmony, and particularly of 

just intonation. While he had been aware of just intonation theory for many years 

(beginning probably with his brief spell as an assistant to Harry Partch while studying at 

the University of Illinois from 1959-1961), it only became a significant part of his own 

musical language with the orchestra piece Clang in 1976. In his 1984 article, “John Cage 

and the Theory of Harmony,” Tenney links Cage’s philosophy of music to the just 

intonation theory pioneered by Partch. The reworking of the solo violin Koan, which has 

strong ties to Cage’s aesthetic in its simple score and conceptual purity, as a just 

intonation string quartet reflects this unlikely pairing. 

 One of the first changes is the systematization of the microtonal steps of the first 

violin—while in the solo version, Tenney was content to indicate that each step should be 

“about an eighth of a semitone,” here he specifies that “the intervals played by the first 
                                                
66 James Tenney, performance note in score of Koan for String Quartet. Analogous shifting fundamentals 
can be observed in Ligeti’s 1971 orchestra piece, Melodien, which scholars have tended to approach solely 
through distance-based analytical methods.  An excerpt from Melodien is analyzed in detail in Chapter 2. 
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violin are determined by the simplest frequency ratios within “tolerance” of successive 

steps of one-sixth of a tempered semitone.” Tenney chooses the simplest ratio that 

approximates each sixth-of-a-semitone step—thus, for example, the first seven ratios are: 

3/2  702 cents 
40/27  680 
22/15  663 
16/11  649 
13/9  637 
10/7  617 
17/12  603 
 
 Notating the violin’s intervals as frequency ratios indicates not only their degree of 

consonance or stability, but also a specific relationship to a fundamental or root. The 

other instruments of the quartet reinforce the harmonic implications of the first violin’s 

interval by playing notes from an overtone series based on this fundamental. To retain the 

“linear and predictable” formal quality of the solo violin work in the quartet adaptation, 

Tenney uses a few simple rules to generate the pitches of the lower strings. These rules 

change from section to section, but within each section, their unfolding is as 

predetermined as that of the soloist. The rules are described in the notes preceding the 

score. Each of the lower strings plays a pitch equivalent to a theoretical combination tone 

of the first violin’s two pitches. Combination tones are a psychoacoustical phenomenon: 

under certain conditions two simultaneous tones can generate the sensation of a third (or 

fourth, etc.) tone which is not actually present in the acoustical signal. The generating 

tones must be quite powerful to generate the non-linear distortions in the middle ear 

which create combination tones—they are much less likely to be heard on string 

instruments than on winds or brass. In this case, Tenney uses the idea of combination 

tones as a compositional device: sounding combination tones are not produced by the 
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violin’s actual sound. We can see his harmonic procedures at work in the following brief 

excerpt: 

 

 
Figure 1.23: James Tenney, Koan for String Quartet, mm. 183-188. Copyright 1984 
by Sonic Art Editions. Used by permission of Smith Publications, 2617 Gwynndale 
Ave., Baltimore, Maryland. 
 
 The first violin begins the excerpt with an 15/11 interval (about 537 cents), a 

complex ratio which implies a fundamental near the piano’s lowest F. The violin’s 

interval gradually narrows to a 4/3 perfect fourth, with an implied fundamental nearly 

two octaves higher, at the E below middle C. After the perfect fourth, the pitches of the 

violin continue to contract, reaching 13/10 (454 cents) at the end of the excerpt. The cello 

sustains an E in unison with the violin’s upper note throughout this excerpt, while the 

second violin and viola perform “combination tone” pitches based on the equations 2a-b 

and 2b-a (taking a as the partial number of the violins upper pitch and b as the partial 

number of the lower pitch).67 For example, given the initial interval 15/11, the second 

violin plays 19 = 2(15)-11 and the viola plays 7 = 2(11)-15. The resultant intervals in the 

                                                
67 Note that this harmonic effect is closely related to frequency and ring modulation, both of which produce 
combination tones based on the interval between a carrier and modulator frequency. With his background 
in electronic music, Tenney would surely have been aware of such parallels. Both frequency and ring 
modulation have been the subject of harmonic experimentation by “spectral” composers and other 
European composers including Hans Zender, Peter Eötvös, and Clarence Barlow. 
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second violin and viola reflect the complexity of the generating interval in the first violin: 

thus, when the first violin reaches the perfect fourth B-E, the second violin and viola have 

the second and fifth partials of a consonant just E major triad. The resultant pitch sets of 

this algorithm, as Tenney points out, always can be understood as a subset of the partials 

of a single fundamental, which shifts as the first violin’s pitches gradually change. The 

partial numbers for this excerpt (with associated cent values for each pitch class) are 

shown in Figure 1.24: the last row of the figure give the pitch class of the fundamental in 

cents and its registral position. 

vn1 =  a    15 402     27 402      4 402     33 402     17 402     13 402 
vn1 =  b    11 1065     20 1082      3 1104     25 1121     13 1138     10 1147 
vn2 =  2a-b    19 812     34 801      5 788     41 778     21 768     16 761 
vla =  2b-a      7 283     13 337      2 402     17 454       9 501       7 530  
root   514  696  402  349  297  761  
   F1+14 G0-4  E3+2  E-flat0+49 E-flat1-3 A-flat1-39 
 
Figure 1.24: Partial numbers, cent values, and fundamentals of chords in Figure 
1.23 
  
 Each of the four-note chords generated by the equations in this section of the piece 

is in the form x, x+y, x+2y, x+3y; that is, the difference between each adjacent chord 

member consists of the same number of partials. Tenney’s choice of this spacing is likely 

to reflect an interest in the combination tone 2f1-f2 (where f1<f2), identified by Guido 

Smoorenburg as the most audible of the combination tones.68 Other composers, including 

Ezra Sims (see Chapter 3) have described harmonies arranged to fit collections of 

combination tones as particularly appealing to the ear. 

 The derivation of these complex harmonies from the two-pitch simultaneities of the 

solo violin Koan suggests how much is implied by a single interval. When we evaluate an 

                                                
68 Guido F. Smoorenburg, “Audibility Region of Combination Tones,” Journal of the Acoustical Society of 
America 52/2 (1972): 603-614. 
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interval as a ratio, we can easily recognize its root implication (the “1” of the ratio) and 

from that root, predict an overtone series template that associates many additional pitches 

which can fit into the sonority without changing the root. 

 

Premise 4: We recognize just intervals even when they are slightly 
mistuned. 
 
Gérard Grisey: Partiels (1975) 

 The harmonic resources of the overtone series also fascinated composers of the 

French “spectral” movement, beginning in the early 1970s. This movement, led by 

composers Gérard Grisey and Tristan Murail, developed quite independently from the 

interest in the overtone series shown by American experimentalists like Tenney and 

Lucier—the spectralists’ compositional influences were mainly European, including 

Giacinto Scelsi, Karlheinz Stockhausen (particularly his 1968 Stimmung), and Olivier 

Messiaen (who was a mentor to Grisey, Murail, and other members of the L’Itinéraire 

group).  

 At its inception, spectralism was seen as an antidote to the mathematical abstraction 

of Darmstadt serialism—though aspects of the serialist aesthetic have always occupied 

spectral composers, especially the division of sound into independent parameters and the 

use of schematic formal designs. This serialist legacy makes the aesthetic of the spectral 

composers quite different from that of Tenney and Lucier—perhaps the most obvious 

difference is the spectralists’ preference for a much more active and dramatic sense of 

formal development. 

 Grisey’s influential ensemble work Partiels begins with a grand gesture—the 

trombone’s fortissimo blast on a low E is accompanied by vehement short downbows 
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from the double bass. As the trombone fades away, the other instruments of the ensemble 

enter one by one with pitches corresponding to the partials of the trombone—the actual 

trombone sound is replaced by a carefully orchestrated replica, a stylized artificial 

“timbre” with complex instrumental sounds replacing each partial of the original (see 

Figure 1.25). 

Figure 1.25: Instrumental synthesis of a trombone sound in Grisey’s Partiels (1975) 
 
 Spectral composers called the scoring of the partials of a complex tone for 

instruments “instrumental synthesis” (synthèse instrumentale). The new availability of 

computer technology for sound analysis gave the spectralists a more complete 

understanding of how real-world sounds were built up of component partials—Figure 

1.26 shows a spectral analysis of a trombone tone. This technology made it possible to 

calculate the relative amplitude of each of the partials, for example, and to examine the 

temporal evolution of a sound spectrum over time: in this trombone sound, the higher 

partials enter slightly later than the lower ones. Grisey uses this information in Partiels to 

assign dynamics to each of the instruments participating in the synthesis, and to shape the 

order of entries. In most brass sounds, the upper partials emerge slightly later than the 

lower ones, a phenomenon which Grisey imitates (on a much expanded time scale) with 
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the staggered entries in his synthesized replica of the trombone.69 This fascination with 

timbre is an essential part of the spectral aesthetic—spectral composers have been 

particularly drawn to the analogy between the partials which make up a complex sound 

and the pitches of an orchestrated harmony; instrumental synthesis makes this analogy 

audible, suggesting intriguing parallels between timbre and harmony. 

 
Figure 1.26: Spectral analysis of a trombone sound 
 
 It’s instructive to compare the notation of Grisey’s overtone chord to Tenney’s 

more precise notation in Koan for String Quartet. By specifying both cents and ratios, 

Tenney provides an exact notation of the intervals of the overtone series, as well as a very 

“high resolution” approximation—the approximation to the nearest cent arguably 

provides more tuning detail than a human performer can hope to accurately realize. In 

                                                
69 It would be an oversimplification to associate the spectralists solely with the technique of instrumental 
synthesis, but particularly in the early days of the movement, this was an essential and frequently-used 
technique.  Later developments in the spectralists’ technique added a variety of effects and transformations, 
including many (including frequency modulation) based on tools of the electronic music studio. 
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contrast, Grisey retains standard equal-temperament tuning, supplementing the “normal” 

pitches with microtonal symbols indicating quartertones. In addition, he uses a down 

arrow for the seventh partial, which at 969 cents above the fundamental falls between the 

equal-temperament minor seventh of 1000 cents and the quartertone-flat minor seventh 

950. With the exception of the seventh partial, all of the other pitches are rounded off to a 

quartertone grid. (The seventh partial falls between the pitches of the quartertone grid, 

and therefore requires a different notation if it is to be closely approximated.) 

 In contrast to Tenney’s just intonation, then, Grisey’s notation depicts an out-of-

tune, approximated version of the overtone series. Our tolerance for mistuning, though, 

means that even a distorted and rounded-off version of the overtone series retains many 

of its essential harmonic qualities—we can still hear, for example, the “rootedness” of the 

sonority, or the relation of the partials to the fundamental, even if the partials are not 

exactly in tune.70 

 Grisey’s quartertone equal temperament has precedents in the microtonal divisions 

of the octave pioneered by early twentieth-century composers like Hába and 

Wyschnegradsky. In an approach to microtonality very different from that of just 

intonation composers like Partch and Tenney, these composers took one acoustically 

tuned interval—the octave—and derived all of the other pitches of their gamut by the 

subdivision of the octave into equal parts, creating scales of quartertones, third tones, and 

sixth tones. This procedure imitated the division of the octave into twelve equal 

semitones which has become the standard keyboard temperament. While such equal 

                                                
70 A psychoacoustic study by Brian Moore suggests that partials can be mistuned by as much as a 
quartertone without destroying the effect of “virtual pitch”: Moore, Glasberg, and Peters, op. cit. While 
Tenney has argued for a degree of tolerance, his tolerance range is considerably smaller than that implied 
by Grisey’s score—Tenney restricts mistuning to about 5 cents in either direction from the referential just 
interval. 
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divisions of the octave tend to favor a “distance” approach to interval, some microtonal 

composers exploring such extended equal temperaments were interested in the way that 

the new divisions could approximate just intervals—this led to some exotic divisions of 

the octave into 19 (Yasser) or 31 parts (Fokker). Grisey was also interested in replicating 

natural just intervals in the grid of quartertone (24-tone-per-octave) equal temperament—

the fact that just intervals can be convincingly implied within a quartertone grid is a 

tribute to our ear’s flexibility and tolerance for mistuning. 

* * * 

 As discussed in Section 3, while Terhardt’s algorithm for finding virtual pitch is 

based on precise subharmonics of each component pitch, a degree of flexibility or 

tolerance is accepted in the final determination of virtual pitch. Such flexibility is an 

absolute necessity in any theory that seeks to translate the abstractions and simple 

numerical relationships of just intonation into real-world sounds. 

 Some flexibility is required even in the simplest tonal progressions. Figure 1.27 

repeats the just intonation Tonnetz of Figure 1.11. The C major scale indicated by bold 

note names allows the formation of five just triads: major triads on F, C, and G, and 

minor triads on A and E. The remaining diatonic triad of the scale, D minor, can only be 

approximated with this pitch set—its fifth, A, is calculated as the 5/4 third above F rather 

than as a perfect fifth from D, and is thus too low by 22 cents (a syntonic comma, or 

81/80). If we raise the A to a perfect fifth above D, then the F and A triads are out of tune 

by the same amount.  
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F#  C#  G#  D#  A#  E#  B#  Fx 
568  70  772  274  976  478  1180 682 
 
D  A  E  B  F#  C#  G#  D# 
182  884  386  1088 590  92  794  296 
 
B  F  C  G  D  A  E  B    
996  498  0  702  204  906  408  1110 
 
G  D  A  E  B  F  C  G 
610  112  814  316  1018 520  22  724 
Figure 1.27: Just intonation Tonnetz 
  
  Many solutions have been proposed for this problem, including keyboards with 

extra keys to accommodate different versions of certain notes; theorists Moritz 

Hauptmann (1792-1868) and Simon Sechter (1788-1867) dispensed with the problem by 

denying that the 2-6 fifth is perfect, describing it instead as diminished. The most 

enduring solution, though, have been various kinds of temperaments—each interval is 

made slightly out of tune with regard to the ideal just interval, but no (or few) intervals 

are so out of tune that they are unusable. In current practice, the standard temperament is 

equal temperament—every step on the keyboard is made the same size, exactly one-

twelfth of an octave. This temperament makes fifths only 2 cents (hundredths of an 

equally-tempered semitone) out of tune, but unfortunately makes each major third 14 

cents sharp. As a result, the equally-tempered third is harsher and more tense than the 

smooth just third. Historically, from the eighteenth to the twentieth century, the flexibility 

of equal temperament outweighed the purity of sound of just intonation.  

 Tempered pitch systems use a limited number of pitch classes, in contrast to the 

potentially infinite number of pitch-classes in just intonation. To bring the infinitude of 

just intervals into a finite set, the just intervals must be slightly mistuned. An example in 

twelve-tone equal temperament is the “circle of fifths”—the idea that a series of rising 

fifths will eventually “loop around,” returning to the starting point in pitch-class space. If 
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the fifths are just, though, the series of fifths never closes—we arrive at something more 

like a spiral than a circle. At the point where the equal temperament circle of fifths would 

close in on its origin, the just intonation spiral of fifths is too sharp by a Pythagorean 

comma of about 24 cents.  

 Equal temperament shrinks the fifth slightly, from about 702 cents to exactly 700 

cents, which allows the circle to close. (While this might seem like hair-splitting, the 

difference between tuning pure fifths and tempered fifths is a practical matter for string 

players who tune in fifths, especially when they need to match the fixed equal-

temperament tuning of the piano.) The centrality of the triad to Western harmony means 

that a system of temperament must consider thirds and sixths as well as fifths and fourths. 

Here, equal temperament leads to much greater mistunings of the just intervals—the 5/4 

major third, for example, is approximately 386 cents in just intonation, but 400 cents in 

equal temperament. The difference of 14 cents is clearly audible—performers will often 

adjust thirds downward, closer to the just interval. In practice, then, ensemble tuning is a 

constant compromise, between the desire to play in just intonation and the flexibility of 

harmonic motion offered by equal temperament. 

  Temperament might have originated as a practical solution to everyday problems of 

tuning, but it exposed some serious contradictions in the foundations of music theory. If 

out-of-tune versions of the ideal just intervals are musically acceptable, why bother with 

the ratios at all? And if we’ve been using ratios to define consonance, what does it mean 

that the 5/4 ratio of a major third can be replaced in equal temperament by the irrational 

number ∛2/1? 
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 To explain these problems, we must recognize that the properties of just intervals 

discussed so far: their harmonic referentiality, rootedness, and harmonic implication, 

persist even when the just interval is slightly mistuned. The practice of temperament 

indicates that this has long been accepted as a tacit theoretical principle, but recent 

scholarship has expanded on its psychological and musical implications. 

 A psychological concept with clear application here is the idea of categorical 

perception—in certain sensory domains, we do not experience a smooth continuum of 

different values, but rather find that phenomena are grouped into discrete, qualitatively 

different categories. We noticed this phenomenon in Tenney’s Koan for solo violin—

despite the even expansions and contractions of the violin’s interval, certain intervals 

could be identified as substantially different in quality from their neighbors. In linguistic 

research, where the theory first emerged, categorical perception describes an unusual 

experimental effect: in a series of vocal sounds carefully graded from “b” to “p,” subjects 

do not recognize a continuum, but rather only “bs” or “ps”—nothing in between.71 The 

musical applications are obvious, and as Edward Burns points out, categorical perception 

simply offers an empirical verification of what has been recognized for centuries: that 

“there is considerable latitude allowed in the tuning of intervals that will still be 

considered acceptable and will still carry the appropriate melodic information.”72  

 While it is likely that the specific categories of our pitch perception are at least in 

part culturally determined, I have argued that just intervals represent important referential 

points for harmonic perception (see Premise 1 above). One of the most articulate 

                                                
71 See Burns and Ward, op. cit., 226. The first research in categorical perception was published by A. M. 
Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within 
and across phoneme boundaries.” Journal of Experimental Psychology 54 (1957):  358-368. 
 
72 Burns and Ward, op. cit., 231. 
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advocates of this viewpoint in recent years has been James Tenney: unlike the “purist” 

just intonation composers Harry Partch and Ben Johnston, Tenney believes that we 

understand the harmonic identity of a just interval even when that interval is not perfectly 

in tune.  

Now, I propose as a general hypothesis in this regard that the auditory 
system would tend to interpret any given interval as thus ‘representing’—
or being a variant of—the simplest interval within the tolerance range 
around the interval actually heard (where “simplest interval” means the 
interval defined by a frequency ratio requiring the smallest integers). The 
simpler just ratios thus become “referential” for the auditory system . . .  
Another hypothesis might be added here, which seems to follow from the 
first one, and may help to clarify it; within the tolerance range, a mistuned 
interval will still carry the same harmonic sense as the accurately tuned 
interval does, although its timbral quality will be different—less “clear,” 
or “transparent,” for example, or more “harsh,” “tense,” or “unstable,” 
etc.73  

 
The range of tolerance, Tenney suggests, would be inversely related to the complexity of 

a ratio—we can accept an octave despite considerable retuning, but a complex ratio like 

19/16 needs precise tuning if it is to be recognized. Among the many possible just ratios 

approximating any given pitch interval, we tend to choose the simplest one: this indicates 

a perceptual bias toward simple intervals, since very complex ratios are likely to be heard 

as mistuned versions of simpler ratios.74 Tolerance makes it possible for the quartertone 

approximations at the beginning of Grisey’s Partiels to imply in-tune just intervals. If we 

accept still greater degrees of tolerance—approximations to a coarser “grid”—we will 

                                                
73 Tenney, “The Several Dimensions of Pitch,” 110 (emphasis in original). 
 
74 This idea closely parallels Hugo Riemann’s “principle of the greatest possible economy for the musical 
imagination,” discussed in detail in Chapter 2. 
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find that complex extended just intonation chords can be implied even in the twelve-tone 

equal temperament of a piano.75 

 

Alexander Scriabin: Poème, op. 69/1 (1912-13) 
  
 A strength of a pragmatic theory of harmonic perception is its applicability to 

music of very different styles and periods. We can apply the same harmonic principles 

demonstrated above in Tenney’s Koan for String Quartet to passages in Scriabin’s 

enigmatic late works. Figure 1.28 shows the first eight measures of Scriabin’s Poème, op. 

69/1. Throughout this passage, the harmony is based largely on a single whole-tone scale, 

which gives rise to four distinct harmonies, one for each two-bar unit. The first and third 

of these are transpositions of Scriabin’s so-called “mystic chord,” while the second and 

fourth are closely-related sets. Though these are not traditional tonal sonorities, to my ear 

each one still has a distinct sense of root—on C, A-flat, E, then A-sharp—despite the 

largely overlapping pitch-class content. How do these complex harmonies relate to the 

heard roots? 

                                                
75 Célestin Deliège has also explored extended just intonation readings of music in twelve-tone equal 
temperament: see “L’harmonie atonale: de l’ensemble à l’échelle” in Sources et ressources d’analyses 
musicales: journal d’une démarche (Sprimont: Mardaga, 2005). 
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Figure 1.28: Alexander Scriabin, Poème, op. 69/1 (1912-13): mm. 1-8  
 
 To answer this question, we can return to Leonid Sabaneyeff’s 1912 description of 

Scriabin’s mystic chord as derived from the overtones of its bass note—as “the seventh 

through the thirteenth partials omitting the twelfth.”76 This correspondence is illustrated 

in Figure 1.29. 

 “Mystic chord” ET cents partial number JI cents difference between JI and ET 
A   900  13th partial  841  -61 
F-sharp  600  11th partial  551  -49 
E   400  10th partial  386  -14 
D   200  9th partial  204  +4 
C   0  8th partial  0  0 
B-flat   1000  7th partial  969  -31 
Figure 1.29: Interpretation of Scriabin’s “mystic chord” as a collection of partials; 
comparison of equal tempered (ET) and just intonation (JI) versions 
 
 Certain overtones are difficult to realize on the piano, where their nearest 

approximation is necessarily out-of-tune. This is particularly true for the 11th and 13th 

partials, which at 551 and 841 cents above the fundamental fall almost exactly between 

two equal temperament intervals. The 11th partial needs to be rounded upward to a tritone 

                                                
76 Clifton Callender, “Voice Leading Parsimony in the Music of Alexander Scriabin,” Journal of Music 
Theory 42/2 (1998): 219-233. See also Richard Taruskin, Defining Russia Musically: Historical and 
Hermeneutical Essays (Princeton, New Jersey: Princeton University Press, 1997): 342. 
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above the root—if it is rounded downward, the resultant interval is immediately 

recognized as a perfect fourth instead of an eleventh partial. Though the thirteenth 

overtone is slightly closer to the minor than the major sixth, either equal-temperament 

interval can make a convincing approximation of this overtone, depending on the context. 

When the 11th overtone is rounded from 551 to 600, the interval 13/11 is best preserved 

by rounding the 13th overtone up as well, from 841 to 900. When the 13th overtone is 

rounded up to 900 cents, it can also be interpreted as a version of the 27th overtone (906 

cents). (Though 27 might seem like a much more complex representation, its reducibility 

to 3×3×3 makes it simpler, in one sense, than the irreducible prime number 13.) Other 

interpretations of the interval are as a just major (5/3) or minor (8/5) sixth, though these 

would each imply a different root than the one suggested here. Sabaneyeff’s description 

has been much disparaged by recent scholars as unacceptably vague and neglectful of the 

chord’s tonal implications. In this context though, tonal implications are constantly 

defeated as the harmony drifts from one chord to the next—Sabaneyeff’s description, 

expanded and clarified by Tenney’s principle that we choose the simplest just interval 

near each heard interval, can help to interpret this harmonic progression. My analysis of 

the passage is illustrated in Figure 1.30. 
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Figure 1.30: Analysis of mm. 1-8 
 
 As the passage progresses, pitches of this opening chord are reinterpreted—the 

pitch D, for example, is heard first as the 9th overtone of C, then the 11th of A-flat, 7th of 

E, and 5th of A#. The shifting harmonic meanings caused by the changing fundamentals 

reflect the mutable, floating sense of tonality in this passage. We can see the importance 

of register in determining harmonic meaning—in many cases, nearly identical whole-tone 

material is given a different harmonic sense by a change in the bass note. This is due not 

only to the symmetry of the whole-tone scale, but also to the near correspondence of its 

pitches to overtones 7 to 13 of several different fundamentals. Considering these pitches 

as overtones allows us to talk specifically about the importance of register in determining 

roots, and also to describe the internal relationships between chord tones, including their 

relative harmonic distances and degree of relatedness to the fundamental and one another. 

Aspects of ratio theory might also be used in combination with more traditional modes of 

analysis—see for example Olli Väisälä’s 2002 article which applies Schenkerian 

prolongational techniques to overtone-based chords in music by Scriabin and other early 
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20th-century composers including Berg and Debussy. 77 (This echoes Ben Johnston’s 

contention that Debussy’s harmonic language “approximates as well as can be in equal 

temperament a movement from overtone series to overtone series, with an emphasis on 

higher partials.”78) 

* * * 

 My analysis of Scriabin’s Poème is indebted to Väisälä’s important research, which 

deserves further consideration here. He notes that while theories based on the overtone 

series were important to composers like Schoenberg and Hindemith, such theories seem 

to have fallen out of favor in recent years—his paper proposes a “qualified 

rehabilitation.” Väisälä’s analyses examine the way that a chord based on the overtone 

series—approximated on the equal-temperament keyboard—can be the underlying 

harmony for a Schenker-style prolongation. This hybrid approach is a fascinating 

departure from the pitch-class set approach that has dominated work on the music of 

these composers. His identification of overtone-based chords in Scriabin’s late piano 

piece Vers la Flamme, Op 72 (“ toward the flame”) demonstrates the possibility that the 

ratio-model of pitch might be used to describe pitch structure in “atonal,” tempered 

music.   

 Väisälä is not the first theorist to discuss overtone collections in Scriabin’s music, 

as we already saw in Sabaneyeff’s analysis of the mystic chord. Väisälä is cautious to 

avoid basing his theory on the idea that the overtone harmonies he uncovers were the 

composer’s explicit intention—his theory works whether or not the harmonies were 

                                                
77 Olli Väisäla, “Prolongation of Harmonies Related to the Overtone Series in Early-Post-Tonal Music,” 
Journal of Music Theory 46/1-2 (2002): 207-283. 
 
78 Ben Johnston, “A.S.U.C. Keynote Address,” Perspectives of New Music 26/1 (Winter, 1988): 236. 
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intentionally constructed to match the overtone series—but it seems quite likely that 

Scriabin was aware of and interested in overtones. The phenomenon of the overtone 

series has often attracted composers of a mystical sensibility—their combination of 

otherworldliness and naturalness meshes well with a mystical worldview, as does the 

almost meditative experience of immersion in the overtones of a sound (see for example 

the music of Giacinto Scelsi or Dane Rudhyar). 

 Väisälä’s article can be read as a critique of set theory: in his conclusion, Väisälä 

identifies “octave equivalence and the treatment of other intervals in terms of equal 

divisions of the octave” as the two premises underlying set theory. Having argued 

elsewhere for an expanded consideration of register and the rejection octave equivalence 

in the context of certain atonal works,79 Väisälä questions here the second premise, the 

idea that other intervals should be primarily understood as divisions of the octave (i.e., 

distances measured in equal-tempered semitones):  

While this premise is adequate for generating the equal-tempered pitch 
space, it is less adequate for the description of the perceptually and 
structurally significant aspects that emerge in music employing that 
collection. Discussing some of the most significant music from the advent 
of post-tonal music from the advent of post-tonal harmony, I have 
attempted to show that its organization is illuminated by allowing for the 
root-supporting status of intervals, a property that does not stem from their 
width in fractions of the octave but from their correspondence with the 
intervals in the harmonic series.80 

 
 By measuring all intervals as “fractions of the octave,” set theory assumes an 

essentially “flat” tonal space, where except for the octave, intervals differ in size but not 

in quality. To account for the “root-supporting status of intervals,” though, Väisälä needs 

                                                
79 Olli Väisäla, “Concepts of Harmony and Prolongation in Schoenberg’s Op. 19/2,” Music Theory 
Spectrum 21/2 (1999): 230-259.   
 
80 Olli Väisäla, “Prolongation of Harmonies Related to the Overtone Series in Early-Post-Tonal Music,” 
271. 
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to turn to the harmonic series, and the way that acoustic and psychoacoustic 

considerations create privileged intervals in the pitch continuum. The result is a space 

that is no longer flat, but filled with landmarks: the just intervals stemming from the 

overtone series.  

 On the basis of the psychoacoustical theories of Ernst Terhardt, Väisälä adopts a 

theory of rootedness: “If a bass tone forms similar intervals with the upper tones as those 

between a fundamental and its harmonics, it will have a tendency to be perceived as the 

root of the harmony—that is, governing the overall pitch pattern in the manner of a 

virtual pitch.” After Parncutt’s 1988 extensions to Terhardt’s theories, Väisälä proposes a 

list of “root supports” based on the partials 1 to 10: “from the strongest to the weakest: 

octave/unison, P5, M3, m7, M2.”81 Root supports are calculated like figured-bass 

intervals, from a bass note. Väisälä adds the tritone (approximating the eleventh partial) 

as an additional, if weaker root support. Väisälä’s analyses combine this model of 

additional root supports with Schenkerian prolongational procedures, prolonging 

overtone series harmonies including any or all of the root supports instead of the standard 

major/minor triad.  

 Väisälä’s theory is based on an assumption that approximations of just intervals 

offer the same kind of root support as their purely-tuned neighbors—this assumption 

allows the interaction of just intonation ideas with the vast body of music conceived for 

the twelve note per octave scale of the piano. Such an interaction allows analytical 

associations impossible in canonical pitch-class set theory—one of the most useful tools 

is the ability to associate sets based on their similar qualities of rootedness rather than on 

shared membership in an abstract set class. By focusing our attention on a different kind 
                                                
81 Ibid, 209-210. 
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of pitch relation, this approach may illuminate aspects of musical experience that would 

otherwise escape notice. One promising feature of an approach which recognizes 

approximate just intervals in tempered settings is a renewed attention to register—the 

spacing of a chord can have a major effect on how its rootedness (or lack thereof) is 

perceived. We might also consider how temperament creates ambiguity between different 

just interpretations—the possibility for multivalence or Mehrdeutigkeit has been one of 

the historical advantages of tempered tunings. Of course, not all music written in equal 

temperament will benefit from a consideration of approximated just intervals or overtone 

series (a Babbitt piano piece, for example, seems less likely than a Debussy prelude to 

have useful root associations)—but, as I set out to show here, the inclusion of such a 

theory in our analytical toolkit may still provide useful insights in some unexpected 

contexts.82 

 In the music we’ve explored so far, we’ve been able to experience harmonic 

rootedness in fairly unambiguous contexts: pitches have been reducible to members of a 

single root at a time. But music—especially the complex repertoire of the twentieth-

century—rarely presents us so clearly with chords that are comprehensible as selections 

from a single overtone series. Can the theoretical premises advanced so far offer ways to 

decipher more ambiguous harmonies? 

 

                                                
82 The association of tempered intervals with nearby just intervals does not rule out the possibility that 
many sonorities in tempered music are chosen precisely for their sound when played as tempered intervals; 
recognizing the harmonic interpretation offered by just intonation does not require ignoring the actual 
tempered sonority. Rather, both aspects of our experience of the sonority can successfully coexist. 
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Premise 5: Faced with large and complex harmonies, we resolve them into 
combinations of multiple simpler harmonies if possible. 
 
 The fifth premise of my argument addresses the segmentation of aural data into 

separate entities, either single or compound in nature. Here we shall see the influence of 

recent studies in psychoacoustics, especially Albert Bregman’s Auditory Stream 

Segregation. Perception, in Bregman’s definition, is “the process of using the information 

provided by our senses to form mental representations of the world around us.” His 

central theme, “auditory scene analysis” is a phrase coined by analogy to visual scene 

analysis. Bregman’s example of a scene analysis problem in vision is our parsing of a line 

drawing of overlapping blocks. To understand the drawing, we have to determine which 

areas of the drawing belong together—if we perform this incorrectly, the image will be 

“chimerical,” as we mistakenly combine parts of different object which do not actually 

belong together.  

 A similar problem arises when we hear a sound in a noisy room. As Bregman 

writes, “A friend’s voice has the same perceived timbre in a quiet room as at a cocktail 

party. Yet at the party, the set of frequency components arising from that voice is mixed 

at the listener’s ear with frequency components from other sources.” If we mixed all of 

these sources together, as if they came from a single source, the timbre of our friend’s 

voice would be distorted by the foreign frequencies; but instead, we are able to separate 

our friend’s voice from its surroundings. This is an instance of auditory scene analysis 

with obvious parallels to visual scene analysis.83 

                                                
83 In two articles, Alfred Cramer has adapted aspects of Bregman’s auditory scene analysis to atonal music 
by Schoenberg and Webern. In his 2002 Music Theory Spectrum article, Cramer sketches a system of 
graphic notation which diagrams different kinds of fusion, sequential linkage, and hierarchical relationships 
between tones. One of his most interesting claims is that the altered octaves (octaves plus or minus a 
semitone) common in this music create an effect of “unpitched fusion,” in which the emergent tone color of 
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 Our ears are never presented with completely isolated sonic objects—rather, we 

receive a complex signal of mixed sounds. John Cage has noted that even in the complete 

sonic isolation of an anechoic chamber, true silence is not heard—the listener’s own 

physical processes produce an unavoidable background noise.84 Our ability to separate 

this jumbled input into separate sources is an astonishing feat of cognitive processing. 

Many of our stream-segregation procedures are reminiscent of the grouping rules of 

Gestalt theory, which finds a music-theoretical expression in James Tenney’s Meta-

Hodos. For example, Bregman suggests that we apply an “old-plus-new heuristic”: “If 

you can plausibly interpret any part of a current group of acoustic components as a 

continuation of a sound that just occurred, do so and remove it from the mixture. Then 

take the difference between the current sound and the previous sound as the new group to 

be analyzed.”85  

 Particularly remarkable is our ability to separate a texture of multiple complex 

pitches into the sounds of individual instruments, keeping their distinctive timbres 

separate. As a basic spectrogram would show, the sound of many instruments playing at 

once gives us a number of separate partials—the trick is to group together the partials 

which emanate from the same source so that we can separate the sounds of individual 

instruments. One of the most important strategies is to group together all of the partials 
                                                                                                                                            
the major seventh or minor ninth is more important than the actual pitch of either component of the 
interval. The fusion, Cramer argues, comes not from the consonance of these intervals (which is relatively 
low), but rather from the high degree of masking between their partials, which increases the difficulty of 
resolving clear individual pitches. See “Schoenberg’s ‘Klangfarbenmelodie’: A Principle of Early Atonal 
Harmony,” Music Theory Spectrum 24/1 (2002): 1-34  and “The Harmonic Function of the Altered Octave 
in Early Atonal Music of Schoenberg and Webern: Demonstrations Using Auditory Streaming,” Music 
Theory Online 9/2 (2003), http://mto.societymusictheory.org/issues/mto.03.9.2/mto.03.9.2.cramer_frames. 
html (accessed April 15, 2008). 
 
84 John Cage, Silence (Middletown, Conn.: Wesleyan University Press, 1961): 8. 
 
85 Bregman, op. cit., 222. Note that this kind of loose guideline resembles my “preference rules,” as 
introduced in Chapter 2. 
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which belong to the same overtone series, and are thus likely to come from the same 

source. (This reflects our experience that many real-world sounds have a harmonic partial 

structure.) As Bregman notes, we seem to apply “a scene-analysis mechanism that is 

trying to group the partials into families of harmonics that are each based on a common 

fundamental. If the right relations hold between an ensemble of partials, they will be 

grouped into a single higher-order organization.”86 

 Bregman goes on to describe the cognitive processing of multiple complex tones 

heard simultaneously:  

If the two fundamental frequencies are unrelated, an analysis that tries to 
find a single fundamental for all the partials that are present will fail. Yet 
we know through listening to music that we can hear two or more pitches 
at the same time. There has to be a way to base the computation of each 
component pitch on only a subset of the partials. Assuming that this is 
somehow done, what we hear in the presence of a mixture of two 
harmonic series (as when two musical tones are played at the same time) 
is not a large set of partials but two unitary sounds with distinct pitches.87 

 
Older theories of pitch perception assumed that we “process” only one complex tone at a 

time: all the signals from the ear were thought to go somewhere in the brain where the 

best-fitting fundamental would be adduced. Bregman’s theory explains how we can 

separate out the sensory input into individual complex tones through a variety of 

segregation mechanisms. When we apply these principles to musical analysis, we will 

typically be interested in phenomena at the higher level of complex tones (musical notes) 

rather than the lower level of individual partials. Many of the musical experiments of the 

spectral school suggest that such a transfer of principles from one level to another is 

plausible and aurally convincing. Moreover, we can use these principles to explain many 

                                                
86 Bregman, op. cit., 507. 
 
87 Bregman, op. cit., 233. See also Hartmann, op. cit., Chapter 6. 
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aspects of common practice tonality and voice leading.88 One could even loosely describe 

consonance and dissonance in tonal music as representing a contrast between belonging 

and not belonging in a given harmonic grouping. As we shall see, these principles can 

also shed light on “atonal” works, where the complexity of harmonic relationships often 

creates intriguing ambiguities of harmonic grouping and rootedness.  

 

Arnold Schoenberg: Erwartung, op. 17 (1909) 

 The application of some of these concepts of “auditory stream segregation” can be 

demonstrated in an excerpt from Schoenberg’s monodrama Erwartung. In his theoretical 

writing, Schoenberg often invoked the idea that complex and dissonant harmonies might 

be understood as upper overtones. While in many cases this idea seems to be only a 

metaphor for the increased dissonance in his atonal and serial music, we can also take it 

literally, seeking ways that overtone formations might be “segregated” into separate 

harmonic entities in Schoenberg’s harmonies. 

 In the chapter titled “Aesthetic Evaluation of Chords with Six or More Tones” in 

his Theory of Harmony, Schoenberg cites a chord of thirteen notes—and eleven different 

pitch classes—from the fourth scene of Erwartung, just before the break of dawn 

(measure 382). See the reduction of the chord to two staves in Figure 1.31, top system.89 

Schoenberg notes that in chords like this one, the dissonances can often be softened by 

                                                
88 See David Huron, “Tone and Voice: A Derivation of the Rules of Voice-leading from Perceptual 
Principles,” Music Perception 19/1 (2001): 1-64. In particular, note Huron’s “Tonal Fusion Principle”: 
“The perceptual independence of concurrent tones is weakened when their pitch relations promote tonal 
fusion. Intervals that promote tonal fusion include (in decreasing order): unisons, octaves, perfect fifths, ... 
Where the goal is the perceptual independence of concurrent sounds, intervals ought to be shunned in direct 
proportion to the degree to which they promote tonal fusion” (18-19). 
 
89 Some published versions of Erwartung include a slightly different version of this chord—the version in 
the complete works matches the example in the Theory of Harmony discussed here. 
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“wide spacing of the individual chord tones.” This makes them more readily 

comprehensible, he suggests, by clarifying their origin as “remote overtones.”  

 

 
Figure 1.31: Three figures from Schoenberg’s Theory of Harmony (1911, rev. 1922) 
 
 We can recognize the difficulty of an analysis of this chord through conventional 

techniques—pitch class set theory, for example, can say little about a sonority with 

eleven different pitch classes, and also ignores register, which seems to be of prime 

importance here. Schoenberg’s approach, illustrated in Figure 1.31, seeks first to reduce 

the number of pitches by explaining away certain tones. In the figure labeled 341, 

Schoenberg shows that he hears the C and E-flat as dissonances with expected resolutions 

to B-flat and D-flat, pitches already present in the chord. 342a indicates a similar 

resolution from F to E. Though the pitches never reach their expected destination in the 

excerpt, Schoenberg argues that their harmonic meaning as unresolved upper neighbors is 

nonetheless clear. By replacing these tones with their resolutions, Schoenberg arrives at 
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the simpler chord in 342b, which he believes can be resolved into two superimposed 

minor ninth chords sharing a diminished seventh chord—see 342c. Schoenberg’s 

conclusion is that the chord is comprehensible because it can be referred to more 

traditional and familiar pitch combinations.   

 Schoenberg’s analysis trails off here, leaving the cello’s F and the four final pitches 

in the bass clef unexplained. In my Figure 1.32, I offer an alternative analysis based on 

similar principles, but hewing more closely to the implications of psychoacoustic 

research. 

 
Figure 1.32: An alternative analysis 
 
 Here, I’ve reinstated the notes that Schoenberg explains away as unresolved 

neighbors. My analysis follows Schoenberg’s in explaining the chord on the second beat 

as a combination of sonorities on C and F#—though I’ve identified overtone structures 

over each root in place of Schoenberg’s minor ninth chords. This follows from the stream 

segregation principle which states that one groups together pitches that can be mapped to 

a single fundamental. Several pitches can be heard as belonging to either root. In my 

reading, the F natural lacks a clear harmonic meaning until the arrival of the B and D# on 

beat 3—these imply the root B, with the F as an 11th partial. Alternate harmonic 

meanings for the F#, C, and F natural arise with the bass fifth D-A—they can now be 

heard as representing partials 10, 14, and 19 of D. 
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 The chord shows the pull of several different potential roots, which allow the notes 

in the upper register to be interpreted in several different ways. This ambiguity reflects 

the sonic complexity of the musical surface.90 Note that this analysis is not atonal, but 

rather tonal, in an extended sense of the word—every pitch can be interpreted as 

harmonically related to one or more roots. This approach reflects Schoenberg’s own 

preference for the term “pantonal” rather “atonal” as a description of his music.91   

 Segmentation has always been a central topic in the analytic literature surrounding 

atonal music: deciding which sonic events belong together is the first step in making a 

pitch-class-set analysis. In most pitch-class-set analyses, segmentation is closely linked to 

an organicist aesthetic, which seeks to illuminate the music by showing motivic 

similarities. As a result, the segmentation is frequently made to reflect possible motivic 

relationships, with psychological principles (like Tenney’s Gestalt rules of proximity, 

etc.) playing only a supporting role. If, as Bregman’s research suggests, there is also a 

tendency to group pitches according to overtone-series templates, we can add a new 

principle of segmentation, based on the nature of our perception rather than a particular 

aesthetic bias toward motivic development. Segmentation by grouping pitches belonging 

                                                
90 Bregman proposes a “Principle of Exclusive Allocation”—that ideally, perception tends to attribute any 
feature to only one object, not more than one.  “A sensory element should not be used in more than one 
description at a time” (Bregman, op. cit., 12). In my discussion of multiple fundamentals in this excerpt, 
I’ve frequently chosen to flaunt this principle and allow single pitches to simultaneously relate to multiple 
roots. While such an allocation might be unusual in natural sonic environments, music frequently creates 
“chimeric” perceptions, fusing sounds from different sources into a single entity. As Bregman notes, “If a 
group of components have arisen from the same physical event, they will have relationships between them 
that are unlikely to have occurred by chance” (ibid., 221). Music frequently sets up these unlikely 
relationships between different sources—for example, two instruments playing in unison (or at the octave, 
fifth, etc.) share common frequencies and contours, which generally would imply a single source. This 
allows our perceptual mechanisms to hear a fused sound in certain circumstances.  Especially in tonal 
harmonic music, such fusion between disparate sources is common as an organizational device. 
 
91 Schoenberg, op. cit., 432n. 
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to the same overtone series can be useful in the analysis of music in a variety of styles, 

including tonal, microtonal, and atonal works.92 

 

Summary 
 
 The five premises introduced in this chapter are the basis for the theory of 

harmonic perception developed in Chapter 2. To briefly review:  

 

1. Just intervals are the referential intervals for harmonic perception.  

 Within the continuum of pitch intervals, we find certain privileged intervals—these 

are clearly audible in the smooth traversal of interval sizes in Tenney’s Koan. These 

privileged intervals are closely linked to the structure of the partials of a complex tone—

the relationship between partials and the just intervals becomes evident in the xöömei 

tradition, represented here by Fedor Tau’s recording Steppe Kargiraa. 

 

2. The principles of standard just intonation can be extended to include higher prime 

numbers.  

 One of the most significant moments in the history of ratio-based interval theory 

was the expansion from Pythagorean (3-limit) to just (5-limit) tunings in the fifteenth 

century. The extension of harmonic resources to include higher prime numbers is in 

theory infinite—composers like Harry Partch and Ben Johnston have made significant 

contributions to extended just intonation, up to and beyond the 11-limit. The pitch 

                                                
92 Segmentation of a vertical sonority into separate parts is often cited as an arbitrary feature of pitch-class 
set analyses—why, critics ask, should a sonority attacked at the same time be split into more than one 
entity? Harmonic templates based on the overtone series offer a reasonable way of making vertical 
segmentations with the support of a convincing theoretical model. 
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language of extended just intonation is illustrated in a simple, monophonic line in Ligeti’s 

Viola Sonata. La Monte Young’s The Well-Tuned Piano shows how an extension to the 

7-limit affects a familiar theoretical construct, the Tonnetz. 

 

3. Each just interval implies a fundamental or root, and a specific closely-related 

harmonic domain based on the overtones of that fundamental. 

 Just intervals are more than simply consonances—they strongly imply a well-

defined harmonic context based on the overtone series in which they can be found. We 

make judgments of potential harmonic roots based on interval size. What’s more, each 

interval affects how we understand other points in the pitch continuum, depending on 

how they fit into the overtone series implied by that interval. This place-finding quality of 

intervals suggests that musical listening involves the constant projection of harmonic 

templates, which are confirmed or denied as the music unfolds, with dramatic effects on 

our interpretation and listening experience. We can hear a shift of harmonic template in 

an excerpt from Alvin Lucier’s Music on a Long Thin Wire. In the string quartet version 

of James Tenney’s Koan, the second violin, viola, and cello add pitches to the solo violin 

work that reinforce the harmonic implications of each interval. 

 

4. We recognize just intervals even when they are slightly mistuned. 

 Following the precepts of just intonation to the letter can lead to an overwhelming 

number of pitches, and also to intonational difficulties in tonal music. The historical 

solution has been temperament, the slight mistuning of the just intervals to allow single 

pitches to fulfill multiple harmonic roles. Demonstrations of quartertone temperament 
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(Grisey’s Partiels) and twelve-tone equal temperament (Scriabin’s Poème Op. 69, 1) 

show how implications of extended just intonation can be conveyed even when played in 

tempered tunings. 

 

5. Faced with large and complex harmonies, we tend to resolve them into combinations 

of multiple simpler harmonies if possible. 

 Just as we can sort aural signals into individual complex tones and timbres, by 

grouping together harmonically related partials, we tend to group together pitches in 

complex textures that have harmonic relationships with one another. We are capable of 

simultaneously maintaining multiple harmonic templates, which are often invoked by 

complex pitch structures, as demonstrated in an excerpt from Schoenberg’s Erwartung. 

 

 The premises introduced in this chapter are the underpinning for the theory of tone 

representation developed in Chapter 2. The historical roots of extended just intonation are 

examined in Chapter 3, along with compositional, analytical, and speculative applications 

of just intonation theory. Chapter 4 is an analytical application of my theory of tone 

representation to Gérard Grisey’s 1996 chamber work Vortex Temporum.    
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CHAPTER 2: A Theory of Tone Representation 
 
Introduction: Toward a theory of tone representation 

 As established in Chapter 1, our auditory perception is naturally biased toward just 

intervals, the intervals found between the partials of the overtone series. The composer 

and theorist James Tenney has called the overtone series and the just intervals it contains 

the only perceptual “givens” in our understanding of pitch.1 Just intervals are the 

historical basis of Western music theory: octaves, fifths and fourths, thirds and sixths are 

all based on simple just intervals whose frequency ratios can be expressed with the prime 

factors 2, 3, and 5. The just intervals are referential sonorities, in the sense that we 

understand them as the ideal versions of intervals, even when the intervals we actually 

hear are out-of-tune. Our tolerance for mistuned just intervals is evident in the historical 

development of temperaments: the essential harmonic meaning of the just interval 

remains, even when it is heard only in an approximate, tempered version. 

 When we match a heard interval to a referential just interval, we produce two 

essential pieces of data: the ratio relating the two pitches, and an implied root or 

fundamental: the “1” of the interval ratio. Given the pitches E4 and G4, for example, we 

identify both a just interval between the two (6/5), and the implied fundamental, C2. The 

number assigned to a pitch imparts a harmonic meaning—in this example, the “5” means 

that we hear the E as the fifth partial of C, not (for example) as an independent root. The 

process of matching a given collection of pitches to a just-intonation interpretation is very 

similar to Hugo Riemann’s concept of “Tonvorstellung,” or “tone representation.” 

                                                
1 James Tenney and Donnacha Dennehy, “Interview with James Tenney,” Contemporary Music Review 
27/1 (2008): 87.  
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Riemann proposes that the harmonic meaning of a tone is determined by how we 

“imagine” it as one of the components of a major or minor triad. 

 In Riemann’s triadic model of tone representation, we understand all intervals 

within the framework of Renaissance just intonation, based solely on multiples of 2, 3, 

and 5—but we can expand the theory to allow more complex interval ratios with higher 

prime factors. This brings us into the harmonic world of “extended just intonation,” 

developed by American experimental composers Harry Partch, Lou Harrison, and Ben 

Johnston. Extended just intonation includes many microtonal intervals which fall 

“between the keys” of twelve-tone equal temperament, such as the flat minor seventh 

(7/4, or 969 cents) or the undecimal tritone (11/8, or 551 cents). If we accept that 

approximations of these extended just intervals still convey the same harmonic meaning, 

many “atonal” sonorities of music of the twentieth century can be understood as equal-

temperament approximations of pitch collections in extended just intonation. Schoenberg 

himself suggested that the future of musical “evolution” would rest on “the growing 

ability of the analyzing ear to familiarize itself with the remote overtones.”2  

 The goal of this chapter is the establishment of a pragmatic theory of tone 

representation, capable of accurately describing the aspect of our hearing which relates 

heard music to the harmonically referential extended just intervals. Such a theory should 

be applicable to a range of musical styles, though it is likely to be most effective in 

unfamiliar contexts. In musical styles that evoke strong stylistic and theoretical 

preconceptions in a listener, those preconceptions of style-specific rules are likely to 

overshadow the subtleties of tone representation; but when fewer culturally conditioned 

                                                
2 Schoenberg, op. cit., 21. 
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cues are available, tone representation emerges as one of the most effective ways of 

coming to terms with the unfamiliar.  

 In the interest of the greatest possible flexibility and transparency, I’ve presented 

my theory in the form of three simple preference rules; these are outlined in detail below. 

Judicious application of the preference rules allows the analyst considerable freedom in 

balancing different musical and contextual criteria, without losing sight of how particular 

choices privilege one aspect of the theory over another. For example, the theorist can 

choose different degrees of intonational tolerance for a just intonation string quartet and 

an equal-tempered piano piece, or confine tone representations to particular prime limits 

or harmonic spaces defined by certain integers. Keeping this degree of flexibility is a 

useful alternative to the wholesale adoption of Terhardt’s algorithm or Parncutt’s 

adaptation of its principles: despite the admirable predictive power of these theories, their 

computational complexity makes them inflexible and difficult to tailor to specific musical 

situations. 

  The most important antecedents for my theory are Hugo Riemann’s Tonvorstellung 

and James Tenney’s harmonic space; each of these theories is examined at length in the 

sections that follow. My own theory is outlined in the section “Tone Representation,” 

which considers the theories of Riemann and Tenney and addresses some of the broad 

theoretical issues which they raise. After a brief review of the basic techniques for 

working with interval ratios, each of the preference rules is considered in turn, with 

emphasis on methods for practical application. At the end of the chapter, the theory is 

demonstrated in an analyses of an excerpt from Ligeti’s Melodien and the “chorale” in 

Schoenberg’s Piano Piece Op. 11/2.  
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Hugo Riemann and Tonvorstellung 
 
 In his idealist approach to music theory, Riemann asserts that we are not merely 

passive recipients of musical sounds, but active interpreters of those sounds into logical 

structures; the mental representation of musical relationships is more important than their 

actual manifestation as sound.3 Every musical tone is “represented” or “imagined” as part 

of a justly tuned major or minor triad. (Riemann’s work focuses on the primarily triadic 

music of the tonal tradition.) The harmonic meaning of each tone depends on its 

context—whether it is, for example, the third of a minor triad or the fifth of a major triad. 

A single, isolated tone may pose problems of ambiguity—but once we are familiar with 

the piece of music in which it occurs, it takes on a character depending on its harmonic 

representation: “According to whether a note is imagined as 1, 3, or 5 of a major chord or 

as I, III, or V of a minor chord, it is something essentially different and has an entirely 

different expressive value.”4  

 Riemann labels the members of a major triad with the Arabic numerals 1, 3, and 5, 

and the members of a minor triad with the Roman numerals I, III, and V. In a minor triad, 

intervals are labeled from the fifth of the chord downward rather than from the root 

upward—this is in keeping with Riemann’s dualist conception of the minor triad as an 
                                                
3 Portions of the discussion of Riemann and Tenney in this chapter originally appeared in my 2006 article, 
“Tone Representation and Just Intervals in Contemporary Music,” Contemporary Music Review 25/3 (June 
2006): 263-281. 
 
4 Hugo Riemann, “Ideas for a Study ‘On the Imagination of Tone’,” translated by Robert Wason and 
Elizabeth West Marvin, Journal of Music Theory 36/1 (1992): 86.  Ideas similar to Tonvorstellung are 
common in music psychology: the existence of mental templates corresponding to the diatonic scale has 
been proposed by Roger Shepard and Daniel Jordan—see “Auditory Illusions Demonstrating that Tones are 
Assimilated to an Internalized Musical Scale,” Science 226/4680 (1984): 1333-1334. As Richard Parncutt 
points out, this is a “cultural” version of the influence of schemata or templates on tone perception, and 
closely parallels the pattern-matching approach to virtual pitch recognition advocated by Terhardt and 
others: see Parncutt, Harmony: A Psychoacoustical Approach: 37. Easley Blackwood has explored the 
possibility of forming “diatonic scales” in a variety of tunings which split the octave into various 
microtonal subdivisions, in The Structure of Recognizable Diatonic Tunings (Princeton, N.J.: Princeton 
University Press, 1985). 
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upside-down version of the major triad. All of these triadic relationships are governed by 

just intonation: thus, the equal-tempered fifths and thirds of chords played on a piano are 

“imagined” as pure, just intonation intervals in the listener’s mind. Heard intervals are 

transformed into just intervals in the mind through the process of Tonvorstellung, which I 

translate as “tone representation” or “tone imagination.”5 Tonvorstellung also provides a 

harmonic meaning for each pitch, associating it with its harmonic root by a just interval. 

 Riemann proposes a general principle governing the way that our minds understand 

tones harmonically—we prefer the simplest possible interpretation consistent with the 

music. “This Principle of the Greatest Possible Economy for the Musical Imagination 

moves directly toward the rejection of more complicated structures, where other 

meanings suggest themselves that weigh less heavily on the powers of interpretation...”6 

Thus, given a collection of pitches, we will understand them as connected by the simplest 

possible just ratios, even when our ears are confronted by the complex and irrational 

intervals of equal temperament: “...our organ of hearing fortunately is so disposed that 

absolutely pure intonation is definitely not a matter of necessity for it.”7 

                                                
5 The history and philosophical implications of the term “Vorstellung” are examined by Michael Kevin 
Mooney in the fourth chapter of his dissertation, “The ‘Table of Relations’ and Music Psychology in Hugo 
Riemann’s Harmonic Theory” (Ph.D. Diss., Columbia University, 1996): 181-209. See also Robert Wason 
and Elizabeth West Marvin’s introduction to their translation of Riemann’s “Ideen zu einer ‘Lehre von den 
Tonvorstellungen’,” Journal of Music Theory 36/1 (Spring 1992): 69-79, Brian Hyer’s “Reimag(in)ing 
Riemann,” Journal of Music Theory 39/1 (Spring 1995): 101-38, and William Mickelsen’s Hugo 
Riemann’s Theory of Harmony: A Study (Lincoln, Nebraska: University of Nebraska Press, 1977). 
 
6 Riemann, op. cit., 88. 
 
7 Ibid., 99. 
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James Tenney: tolerance and harmonic space 

 For Riemann, the possibilities of tone representation end with the tonal 

relationships found within a triad: just intonation thirds and sixths, fourths, and fifths. 

James Tenney has proposed some similar theoretical ideas, but from a vastly different 

aesthetic position—while Riemann was aesthetically conservative, Tenney is a major 

creative figure in American experimental music. Like Ben Johnston and Harry Partch, he 

expands the concept of just interval to allow more complex integer ratios. However, 

unlike these more strict just intonation advocates, Tenney allows what he calls 

tolerance—“the idea that there is a certain finite region around a point on the pitch height 

axis within which some slight mistuning is possible without altering the harmonic 

identity of an interval”8—see the discussion of tolerance in Chapter 1, Premise 4. 

Tenney’s idea that we hear intervals as “representing” the “simplest interval within the 

tolerance range” comes very close to Riemann’s “Principle of the Greatest Possible 

Economy for the Musical Imagination,” though Tenney is open to far more complex 

ratios as the basis of referential just relationships than Riemann’s triadic possibilities. 

Tenney separates the exact size of a heard interval from its harmonic sense; thus, 

we can imagine two different heard intervals representing the same harmonic sense, or 

the same heard interval representing two different harmonic senses. As an example, an 

equal temperament major third (400 cents) played on a piano can represent a just 5/4 

major third of 386 cents. The equal-tempered third is audibly sharper than the smaller just 

third, but we can still identify it as projecting the “harmonic sense” of the just interval. 

One might object that there is a just ratio that much more closely approximates the equal 

                                                
8 Tenney, “The Several Dimensions of Pitch,” 109. 
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temperament third: the 24/19 interval of 404 cents. However, due to Tenney’s “simplest 

interval rule, we should tend to understand the 400 cent equal temperament third as 5/4, 

not 24/19.9  

 In a 1987 interview, Tenney defines “simplest” as equivalent to “the most 

compact arrangement in harmonic space”:  

Given a set of pitches, we will interpret them in the simplest way possible. 
This can be translated into harmonic space terms by saying that it will be 
the most compact arrangement in harmonic space. Well, I think 
compactness, in that sense, could be measured somehow, and could be 
made very explicit by speaking of the sum of harmonic distances among 
these various points. So you could go through a piece and say, “Alright, 
we’ve heard in the beginning of the piece two pitches. You take the 
simplest ratio representation of that interval—tempered. Now we hear the 
third pitch. What specific, rational intonation for that approximate pitch 
will give us the simplest configuration in harmonic space, the most 
compact configuration in harmonic space? Let’s call it that.”10 

 
The idea of harmonic space is defined in Tenney’s 1984 essay “John Cage and the 

Theory of Harmony.”11 In harmonic space, each pitch is represented by a discrete point, 

                                                
9 The context in which we hear an interval is very important in determining its harmonic sense: if we hear 
the equal-tempered third C-E as part of a larger set of pitches implying a fundamental of A, the context 
could lead us to understand it as the complex just ratio 24/19. If we hear the same third on its own, though, 
we are more likely to understand it as the simpler ratio 5/4, with a root of C. 
 
10 James Tenney and Brian Belet, “Interview with James Tenney,” Perspectives of New Music 25/1-2 
(1987): 462. Tenney’s theory that we prefer simple explanations is closely related to the Gestalt psychology 
principle of Prägnanz (conciseness). 
 
11 Anyone familiar with Cage’s biography will find this last title a strange juxtaposition—in a well-known 
anecdote, Cage’s teacher Schoenberg warned him that his lack of a “feeling for harmony” would be “a wall 
through which [he] could not pass.”  Cage supposedly replied, “In that case, I shall devote my life to 
beating my head against that wall.” Cage, Silence, 261. In “John Cage and the Theory of Harmony,” 
Tenney proposes the need for a harmonic theory based on the psychology of harmonic perception.  Such a 
theory would be descriptive, not prescriptive—it would not set rules for harmony in a particular style, but 
would instead describe the perceptual result of any harmonic choice.  Tenney wants his theory to be as 
general and wide ranging as possible—pertinent to music of any time or place.  Here the influence of Cage 
becomes apparent—particularly Cage’s desire to embrace all sounds as potentially musical.  In keeping 
with Cage’s open attitude toward musical material, Tenney seeks a harmonic theory that can apply to any 
set of pitches. James Tenney, “John Cage and the Theory of Harmony,” in Soundings 13: The Music of 
James Tenney (Santa Fe, New Mexico: Soundings Press, 1984): 55-83.  Also in Musicworks 27 (1984), 13-
17. Reprinted in Writings about John Cage, ed. Richard Kostelanetz (Ann Arbor, Michigan: University of 
Michigan Press, 1993): 136-61. 
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and is understood as a ratio relation to a central reference pitch, labeled 1/1. A simple 

harmonic space is the Riemannian Tonnetz, with axes representing multiples of 3 and 5. 

Harmonic space can be extended to many dimensions, though, by the inclusion of higher 

prime numbers: thus, intervals including 7 or its multiples create a new axis, as do 

intervals invoking 11, 13, or other primes. Distance between pitches is measured by the 

summation of steps along each axis: the axes are weighted so that a step along the 7 axis 

(for example) is “longer” than a step along the simpler 3 axis. The details of 

measurements in harmonic space are explored in the discussion of Preference Rule 2, 

below. 

 

Tone representation 

 In the theory proposed here, “tone representation” is defined as the identification of 

one or more tones as partials in relation to a theoretical root or fundamental.12 The 

complex of root and partials will be referred to as a tone representation, and can be 

concisely notated as a root followed by a list of partial numbers in ascending order. For 

example, if we understand an E above middle C as the fifth partial of a bass C2, we could 

describe that understanding with the tone representation C2(5). If we identify the fourth 

E4-A4 as a just perfect fourth, we can notate this tone representation as A2(3:4). (For 

consistency of notation, the partial numbers of intervals always are listed in ascending 

order, though this breaks the standard just intonation convention of notating them within 

                                                
12 The term “representation” must be used carefully; in the current context, it could be taken in several 
different senses. 1) We mentally “represent” heard pitches as points on a harmonic template based on the 
overtone series; 2) Our understanding of heard pitches is summarized in a “tone representation”; 3) the 
heard pitches are “representatives” of some underlying reality. The first two readings, which emphasize 
representation as a cognitive process are compatible with my theory; the third, with its strong tendency 
toward Platonism, seems philosophically untenable and should be avoided.  
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the octave 1/1 to 2/1.) The experience of a dominant seventh chord on G as comprising a 

major chord with an added natural seventh is shown in the tone representation 

G(4:5:6:7).13 Partial numbers are particularly useful for the kind of harmonic analysis 

proposed here: they can easily be converted into actual frequencies by multiplying the 

partial number by the frequency of the fundamental, but are less cumbersome to work 

with and offer a kind of “movable-do” solfège in relation to the fundamental. For 

example, the partial number 17 always represents a pitch four octaves and 

(approximately) 105 cents above the root.14 

 The root itself can be notated with varying degrees of specificity: as a simple note 

name, as a note name plus/minus cents deviation (for microtonal pitches), and with or 

without an indication of register (e.g. C4 = middle C). Whether or not register is included 

will depend on the musical situation: for example, if we are discussing representations of 

pitch classes instead of pitches in register, the register of the root is irrelevant. Where it is 

obvious or can be easily assumed from context, the root information can be omitted and 

taken as read: for example “the interval C4-F4 is represented as 3:4” implies a theoretical 

                                                
13 A related notational convention can be found in Erkki Huovinen’s Pitch-Class Constellations: Studies in 
the Perception of Tonal Centricity (Turku: Suomen Musiikkitieteellinen Seura, 2002). Huovinen, a music 
psychologist, studies how listeners choose tonal centers when presented with series of pitches. He develops 
the intriguing concept of the pitch-class constellation: “a tonally interpreted pitch-class set in which the 
subjective, local tonal center is taken as pitch-class 0.” In his example of this notation, Huovinen compares 
two interpretations of the pitch set A-C-E-G. If it is understood as a seventh chord centered on A, it is 
notated A[3, 7, 10]; if it is understood as a C major triad with an added sixth, it is notated C[4, 7, 9] (Erkki 
Huovinen, “Two Arguments for the Mental Reality of Diatonicism: A Reply to Eytan Agmon,” Music 
Theory Spectrum 28 (2006), 141-153: 144). Such a notational convention is clearly useful for music theory, 
a field in which questions like “Do you hear that as ^1 of G or ^5 of C?” are so common. 
 
14 This definition of tone representation assumes that the mapping between a given set and its 
representation is one-to-one. If we don’t require that the mapping of the input set to the overtone series is 
one-to-one, cases could arise where notes that are close together (for instance, the adjacent quartertones in 
some works by Giacinto Scelsi) both map into the same tone representation—while not unthinkable, this 
complicates the calculation of tone representations discussed below. To avoid this situation, we could 
resolve any such “blurred” notes into a single pitch before subjecting the chord to tone representation 
analysis. 
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root of F2. Only when discussing abstract interval sizes without a specific pitch class 

context will we make tone representations without any root: “the equal temperament 

tritone is represented as 12:17.” 

 This definition of tone representation and the associated notational convention 

strongly favor interpretations where all the pitches subjected to tone representation are 

overtones of the root: it does not make allowances for “subharmonic” relationships to a 

root. An example of a subharmonic relationship would be the hearing of the C4-F4 fourth 

with C as the root instead of F. Since F is not an overtone of C, this is an unlikely tone 

representation in my system: F cannot be represented as a whole number partial of the C 

root. Though I’ve found the “overtone only” approach adequate for the analyses 

presented here, it is possible to imagine musical situations where subharmonic tone 

representations would be desirable: e.g., taking the trichord C-F-G as centered on C, not 

F as my theory would imply with the tone representation F(6:8:9). One adaptation that 

would open the door to subharmonic tone representations is allowing fractions in the list 

of partial numbers: with this modification, we could notate the C-F-G trichord as 

C(2:8/3:3). The proportion between the numbers remains the same, but the “1” of the 

ratio is assigned to a different pitch. 

 An essential part of any theorizing involving tone representation is empirical 

testing. An effective way to test a root assignment is playing or singing that root along 

with the sonority in question—a convincing root assignment should fit with all the chord 

members without substantially changing how they are perceived in relation to one 

another. The root is most effective when in its correct registral position as “1” of the tone 

representation ratio. Similar Hilfsvorstellungen (auxiliary aids to imagination or 
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representation) are the lower partials of the root, 3 and 5—these pitches should “fit” 

convincingly with the sonority if the tone representation is correct. In effect, by adding 

any of these pitches, we are examining their fit with empty notches in the “harmonic 

template” proposed by Terhardt’s theory of virtual pitch. As in Terhardt’s theory, there 

may be cases where two or more convincing interpretations make tone representation 

ambiguous; such ambiguity is not necessarily undesirable, and may accurately reflect 

multivalency in a work’s structure.15 I agree with David Lewin’s defense of multiplicity 

when comparing his analysis of Stockhausen’s Klavierstück III with Nicholas Cook’s 

contrasting reading: “The differences in segmentation between Cook’s analysis and mine 

should not be problematic, I think, except for those who believe that a form is ‘a Form,’ 

something a piece has one and only one of in all of its aspects.”16  

 The theory of tone representation advanced here is in some sense the opposite of 

Milton Babbitt’s view that atonal compositions are best understood as “contextual”—that 

is, based solely on structures introduced within the individual work. Instead, the ratio-

based model that I discuss here is a theory of harmonic perception that can be applied 

across a broad repertoire of very different works. This is not to deny the importance of 

contextual relationships in these compositions, but to acknowledge that certain aspects of 

our harmonic understanding are likely to remain consistent from piece to piece.  

These consistent aspects of harmonic perception are precisely those which are addressed 

by tone representation. The theory’s main advantages include: 1) a clear way of 

describing our intuitions about rootedness and relative consonance and dissonance; 2) 

                                                
15 Bregman (op. cit., 232-239) describes how  an inharmonic complex of partials will often have a “weak” 
global pitch: the pitch finding mechanism does the best it can to assign a pitch, balancing different 
implications of the complex. 
 
16 David Lewin, Musical Form and Transformation (New Haven, Conn.: Yale University Press, 1993): 62.  
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analytical sensitivity to register, which is often ignored by distance-based theories; and 3) 

the ability to make sense of complex harmonies that are difficult to engage with other 

approaches. These strengths make tone representation a valuable tool for pursuing an 

interopus understanding of harmony in many different styles of twentieth-century and 

contemporary music. 

  

Working with interval ratios 

 Scholars of historical music theories and just intonation composers may be well 

acquainted with the procedures of working with interval ratios, but to most contemporary 

musicians such calculations are unfamiliar. I offer a brief summary of the most important 

techniques here. Readers already familiar with the basic principles of ratio intervals may 

wish to skip to the next section.17 

 

notation: Any just interval a:b can be understood as the interval between partials of a 

harmonic series with the same numbers. Since Harry Partch, just-intonation composers 

have used ratios to define pitches, not just intervals. To use ratios to denote pitches 

instead of intervals, a given 1/1 must be chosen. If we assign 1/1 to a given pitch, 3/2 will 

describe the pitch a perfect fifth above, 6/5 the pitch a minor third above, and so on. In 

most current literature on just notation, pitch names are treated as pitch classes and 

represented as ratios in the single octave between 1/1 and 2/1. Intervals outside that range 

are multiplied or divided by 2 (equivalent to transposition of one of the pitches by an 

                                                
17 David B. Doty’s Just Intonation Primer (San Francisco: The Just Intonation Network, 1993) is a very 
clear introductory text on these principles; see also Kyle Gann’s website, “Just Intonation Explained” 
(http://www.kylegann.com/tuning.html, accessed April 15, 2008). An active online discussion group on 
tuning issues  (especially in extended just intonation and non-twelve-tone temperaments) is located at 
http://launch.groups.yahoo.com/group/tuning/. 
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octave) until they fall within these bounds. For example, 9/4 (a major ninth above 1/1) 

would be changed to 9/8 (a major second above 1/1), and 15/32 (a minor ninth below 1/1) 

would be changed to 15/8 (a major seventh above 1/1). 

 As described above, I will notate tone representations as a root followed by a list of 

partial numbers in ascending order, separated by colons: for example, the tone 

representation F(5:7:9:11) describes four pitches heard as the 5th, 7th, 9th, and 11th partials 

of F. The root of a tone representation is equivalent to the pitch 1/1 in standard just 

intonation notation. When referring to just intervals outside the context of tone 

representation, I will use ratios without an root designation in the standard high/low order 

of appearance (3/2, 9/8, etc.). 

 

addition: To add ratio intervals, multiply the ratios together. A major third (5/4) plus a 

minor third (6/5) = 5/4 × 6/5 = 30/20 = 3/2 = a perfect fifth. 

 

subtraction: To subtract interval A from interval B, divide B by A. In ratio terms, this 

means multiplying A by the reciprocal of B. An octave (2/1) minus a major third (5/4) = 

2/1 ÷ 5/4 = 2/1 × 4/5 = 8/5 = a minor sixth. 

 

limits: Harry Partch introduced the useful idea of “limits.” A just intonation system has a 

limit equal to the highest prime number used as a factor in its ratios. Thus Pythagorean 

just intonation, which uses only the primes 2 and 3 (and their multiples) in its ratios, is a 

three-limit system; Renaissance just intonation, which adds 5 and its multiples, is a five-

limit system. Extended just intonation in Partch’s formulation went to the eleven-limit, 
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while Ben Johnston has invoked primes as high as 31 (though usually in a subsidiary 

role). 

 

converting ratio intervals to cents: To change a ratio a/b into cents, we use the formula 

c = 1200 × log2a/b. Converting cents into a ratio is a much less common operation—this 

is because most cent values yield complex irrational numbers instead of simple ratios. 

The formula to find a given b and an interval c in cents is a = b × 2c/1200. 

 Figure 2.1 lists all of the intervals (within an octave) which use the partial classes 1 

to 21. (The limitation to partial classes below 21 reflects the difficulty of accurately 

recognizing intervals beyond that limit, though arguably in certain circumstances much 

more complex intervals can be accurately perceived.) They are sorted in steps of one-

sixth of a semitone; the symmetrical layout of the chart puts each interval opposite its 

inverse (for example, 14:17 is opposite 17:28). The size of each just interval is shown in 

cents as a subscript before its ratio. Many heard intervals have more than one possible 

tone representation: for example, the equal-temperament semitone can be closely 

approximated by the tone representations 18:19 (94 cents), 17:18 (99 cents), or 16:17 

(105 cents).  
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59717:24          60312:17  

5835:7  58315:21       6177:10  61721:30 

56313:18        6379:13 

54319:26  5518:11       64911:16  65713:19 

52914:19  53711:15       66315:22  67119:28  

4983:4  4989:12  498 15:20  49821:28    7022:3  7026:9  70210:15  70214:21 

46413:17  47116:21       72921:32  73617:26   

44617:22  45410:13       74613:20  75411:17  

4357:9         7659:14 

40915:19  41811:14       7827:11  79119:30 

40419:24        79612:19  

3864:5  38612:15       8145:8  81415:24 

35913:16  36617:21 37021:26     83013:21  83421:34  8418:13 

3479:11        85311:18 

33614:17        86417:28 

3165:6 31615:18       8843:5  8849:15  

29816:19         90219:32 

28117:20  28911:13       91113:22  91910:17  

2676:7  26718:21       9337:12  93321:36 

24813:15  25419:22       94611:19  95215:26 

2317:8  23121:24       9694:7  96912:21 

21715:17        98317:30 

2048:9         9969:16 

1829:10  19317:19        100719:34  10185:9 

16510:11 17319:21       102721:38  103511:20 

15111:12        10496:11 

12813:14  13912:13       106113:24  10727:13 

11215:16  11914:15       108115:28  10888:15  

9418:19  9917:18  10516:17     109517:32  11019:17  110619:36  

8121:22  8420:21  8919:20     111110:19  111621:40  111911:21  
 

Figure 2.1: Table of intervals between partial classes 1 to 21 
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Preference rules for tone representation 

 In translating a collection of heard pitches to a referential just-intonation set, we are 

guided by what Riemann calls the “principle of the greatest possible economy for the 

musical imagination.”18 We choose the simplest just-intonation pitch set which matches 

the heard pitches, while minimizing the amount of mistuning between the heard pitches 

and their just intonation counterparts. Because many factors combine to determine the 

simplest tone representation, it is difficult to completely formalize the theory—what I 

propose instead is a simple model based on preference rules, which gives intuitively 

satisfying results.19 In my view, the flexibility of this model is not a weakness, but rather 

one of its greatest strengths—the way we understand tones and their relations needs to be 

context-sensitive to allow for the interaction of other musical parameters with our 

harmonic perception. The three preference rules outlined here suggest the most likely 

ways to interpret any given harmony, while allowing the analyst to weigh the impact of 

contextual factors.20 

                                                
18 Riemann, op. cit., 88. As noted above, a similar principle appears in the writings of the James Tenney. 
 
19 Preference rules make their first appearance in music theory in Fred Lerdahl and Ray Jackendoff’s A 
Generative Theory of Tonal Music (Cambridge: MIT Press, 1983). The rules proposed here appear in a 
somewhat different form in my article “Tone Representation and Just Intervals in Contemporary Music,” 
Contemporary Music Review 25/3 (2006): 263-281. 
 
20 The preference-rule approach shares a high degree of flexibility for the application and interaction of 
rules with Gestalt psychology’s approach to visual scene analysis. Describing a Gestalt mechanism for 
parsing visual scenes, Bregman suggests that “it would be a good rule of thumb to prefer to group surfaces 
that were similar in appearance to one another” in color, texture, brightness, etc. This rule of thumb might 
not always yield a correct representation of the scene, but “if this principle were given a vote, along with a 
set of other rules of thumb, it is clear that it would contribute in a positive way to getting the right answer.” 
Bregman, op. cit., 24.  
 Like the theory of tone representation advanced here, Ernst Terhardt’s algorithm for finding virtual 
pitch (discussed in Chapter 1) frequently locates several possibilities for the virtual pitch of a given set of 
components. Terhardt invokes criteria similar to my three preference rules to choose between competing 
interpretations: “One may consider as being most significant that virtual-pitch value which a) is indicated 
by the integrating interval comprising the greatest number of near coincidences; b) corresponds to the 
smallest subharmonic number m; and c) can be obtained to the smallest integrating interval” (Terhardt, op. 
cit., 169). In their general effect, these guidelines correspond respectively to my preference rules 3, 2, and 



Chapter 2: A Theory of Tone Representation 

—109—  

1) Prefer interpretations in which the referential just intervals correspond as closely as 

possible to the actual intonation of the music—that is, tone representations which require 

the least retuning from the heard intervals to the referential just intervals.  

 

2) Use the simplest possible interpretation of a pitch collection: the tone representation 

with the simplest just intervals between its members. (Simple intervals have low integers 

in their frequency ratios when reduced to lowest terms.) The presence of the fundamental 

(or one of its octave transpositions) tends to considerably strengthen the plausibility of a 

tone representation. 

 

3) Use the smallest possible number of fundamentals; invoke multiple fundamentals only 

if they yield a significantly simpler interpretation than is possible with a single 

fundamental.  

 

These rules provide a framework for determining the most likely ratio representations for 

any set of pitches, and correspond closely with Riemann’s economy principle and 

Tenney’s idea that we make sense of pitches in the most compact possible arrangement in 

harmonic space. The rules are also flexible enough to allow interpretation based on the 

musical context—in the analyses which follow, the analytical claims can and should be 

checked by ear. In the subsections which follow, each of these preference rules is 

explored in detail. 

 

                                                                                                                                            
1. While Terhardt’s algorithm can form the basis for a theory of chord perception (see the work of Richard 
Parncutt, for example), I find the approach outlined here more intuitive to apply in analysis, if perhaps less 
strictly formulated from a quantitative, cognitive-science standpoint. 
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1. Prefer interpretations in which the referential just intervals correspond as closely 
as possible to the actual intonation of the music—that is, tone representations which 
require the least retuning from the heard intervals to the referential just intervals.  
 
 This preference rule (unlike the larger theoretical argument of this dissertation) 

deals purely with pitch distance instead of just interval—it applies our common-sense 

notion that the best tone representation must closely match the input set in absolute pitch. 

The degree of tolerance we accept between the input set and its tone representation 

cannot be definitively fixed—rather, it will vary depending on musical context. In music 

intended for performance in twelve-tone equal temperament, for example, we might have 

to accept retuning of as much as 50 cents: for example when the 11th harmonic (551 cents 

above the pitch class of the fundamental) is approximated as an equal-temperament 

tritone. The complexity of the intervals which can be conveyed to a listener is highly 

dependent on the precision of intonation: the more complex just intervals require great 

precision in tuning if they are not to be confused with simpler nearby intervals. The 

approach taken here offers a way to build a list of the possible tone representations of a 

given pitch set, ranked from closest to least close fit. After this list is created, the 

remaining preference rules can be invoked to select the best tone representation from the 

list—usually this involves a compromise between considerations of close fit (as described 

by this preference rule) and the simplicity of the intervals in the tone representations (as 

stated in Rule 2). 

* * * 

 With the mathematical tools outlined in Clifton Callender’s Music Theory Online 

article “Continuous Transformations,” it is possible to quantify how much retuning is 

required to map a given pitch class set onto a target just-intonation pitch class set—we 
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can calculate the Cartesian distance between the two sets.21 Using basic calculus, we can 

find the transposition of the just intonation set which minimizes this distance: the 

transposition with the least total retuning. The distance metric allows us to compare how 

well the input set fits with different just-intonation representations, and choose the best 

fit—the process can even be automated as a computer program, assuring that no 

reasonable representations are accidentally overlooked.  

 To calculate the just intonation set which most closely matches a given input set, a 

computer is useful to compare the fit of many possible just intonation sets. The number of 

just intonation possibilities quickly becomes unwieldy for calculations done by hand: if 

we consider four-note sets made up of the 17 odd numbers (partial classes) from 1 to 33, 

there are 2380 different tetrachords. To complicate matters further, we will need to 

consider different mappings of the input set to each of the possible approximations. Since 

we will avoid voice-crossings in these mappings, we can limit our investigations by 

ordering both the input set and each of the possibilities from low to high, but we will still 

need to consider each of the four circular permutations for every possible representation, 

resulting in 2380 x 4, or 9520 possibilities for tetrachords using the odd partials from 1 to 

33. 

 For computational purposes, the most effective way of finding the closest set is by 

calculating the minimum Cartesian distance between the input set and each target set at 

various transpositions: this technique is presented in Callender’s article. Cartesian 

                                                
21 Clifton Callender, “Continuous Transformations,” Music Theory Online 10/3 (2004), 26-31. Cartesian 
distance is synonymous with Euclidean distance: both caluculate the shortest line conencting two points. 
An alternative to Cartesian distance is the “city-block” metric, which sums the distance between the points 
on each axis. City-block metrics show the distance one would have to travel between two points while 
traveling only in directions parallel to an axis, much as one would navigate city streets laid out in a grid. 
Cartesian distance, on the other hand, would calculate this distance “as the crow flies.” 
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distance between the sets P and Q is determined by the equation d(P,Q)=√∑(qi-pi)2. To 

find the transposition of Q that is closest to P, we will explore all transpositions of Q by a 

variable x: d(P,Q+x)=√∑(qi-pi+x)2. We wish to find the value for x which produces the 

minimal distance between P (our input set) and Q (the target set transposed by x)—this is 

the point where the derivative of f(x) = 0.  

 The advantage of the Cartesian distance metric over the intuitively simpler “city-

block” metric is that with Cartesian distance, this graph has a single minimum—that is, 

there is one and only one transposition that minimizes Cartesian distance between two 

sets.22 When a city-block metric is used, the same minimum value can sometimes extend 

over a range of transpositions—the distance graph’s minimum may have a flat bottom 

instead of a single point. Using Cartesian distance makes it possible to use calculus to 

determine a single low point by calculating the derivative of the distance function and 

finding what value of x makes the derivative equal to zero—this precision is ideal for 

computational purposes.  

                                                
22 At the minimum Cartesian distance, the distances are minimized between all of the points—because each 
distance qi-pi is squared, if any one distance is substantially larger than another, it will disproportionately 
change the overall Cartesian distance. Faced with a number of transpositions of the target sonority where 
the sum of absolute displacements (city block measurement) is equal, the Cartesian measurement finds the 
transposition which minimizes the displacement of any given voice—thus it seeks the transposition of the 
set which is closest to the center of all the possibilities, thus minimizing all displacements. For example, 
given the input set 0 100 200 350 and a set of possible tone representations comprising the tetrachords in 
equal temperament, the closest two equal temperament tetrachords are 0123 and 0124.  The minimum city 
block distance is 50 for each—but to minimize the Cartesian distance, in each case the reference tetrachord 
must be transposed up or down by 12.5 cents: 0123 goes to 12.5 112.5 212.5 312.5 and 0124 goes to 
1187.5 87.5 187.5 337.5. So, the city block distance between the input set and either transposed set is 12.5 
+ 12.5 + 12.5 + 37.5, or 75 cents, even though there’s a transposition with a smaller city block distance of 
50 cents, with motion in just one voice. Taking the Cartesian distances, though, √0 + 0 + 0 + 50 *50 = 50 
while √12.52 + 12.52 + 12.52 + 37.52  = 43.30, which is a smaller value. Minimizing Cartesian distance 
means moving each voice a small amount rather than one voice by a larger amount. (With the scaling factor 
introduced by Callender, 43.30 would be scaled to equal 50 by multiplying by 2/√3.) This is the main 
difference between Cartesian distance and city-block distance, which simply sums the distances between 
each qi and pi. Viewed broadly, though, the results obtained by the two metrics are quite similar. For more 
on distance metrics, see Rachel Hall and Dmitri Tymoczko, “Poverty and polyphony: a connection between 
music and economics,” in R. Sarhanghi, ed., Bridges: Mathematical Connections in Art, Music, and 
Science (Donostia, Spain, 2007).  
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 This is the basic algorithm: 

1) the input set is sorted from low to high; 

2) the sorted input set is compared to a list of all the possible tone representations, in each 

of the possible circular permutations; 

3) for each of these possibilities, the transposition level which requires the least retuning 

is found; 

4) all possibilities are sorted based on their distance from the input set after being 

transposed to the transposition level from Step 3. The result is a list of the closest 

matches from the list of possibilities, each matched with a specific fundamental and a 

distance value. 

 To trace the flow of this process, I offer here a demonstration with a much more 

restricted set of possible tone representations. The same computational principles will 

apply to the much larger set of tone representations pursued later in this chapter. Instead 

of allowing tone representations involving the odd integers from 1 to 33 (resulting in 680 

trichords and 2380 tetrachords), for demonstration purposes we’ll use the severely 

constrained set 1, 3, 5, 7, which has just four trichordal subsets. These subsets can be 

expressed in both partial classes and pitch classes expressed in cents.23 In Figure 2.2, 

each trichord is arranged in ascending order within a single octave. 

partial class  pitch class in cents (C = 0) 
1 5 3  0 386 702 
1 3 7  0 702 969 
1 5 7  0 386 969 
5 3 7  386 702 969 
Figure 2.2: Partial classes and pitches for trichordal subsets of 1, 3, 5, 7 
 

                                                
23 The term “partial class” is introduced on page 32, by analogy to pitch class. Stated briefly, a partial class 
is the collection of all the octave transpositions of a given harmonic partial: this collection is identified by 
number of the lowest partial. Thus, the 5th, 10th, 20th, and 40th partials all belong to the partial class 5. 
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Using pitch class rather than pitches-in-register here simplifies the table enormously—we 

only need one value for each pitch class instead of a different value for each registral 

position. Information about actual register can be restored later, when we examine the list 

of best-fitting just intonation sets expressed as pitch classes. 

 Given an input set—let’s try 0 200 400—we can begin to explore which of these 

tone representations offers the closest fit. We will want to compare the distance between 

the input set and each of the available tone representations. Since we haven’t determined 

yet which pitch of the input set will map onto each pitch of the possible representations, 

we need to check each of the possible rotations of the representations. Each possible tone 

representation is listed from low to high—rotations 1 and 2 add 1200 cents (an octave) as 

necessary to keep the pitches of each in ascending order. The best transposition of Q is 

calculated by finding where the derivative of f(x) equals zero.  

 Recall that d(P,Q+x)=√∑(qi-pi+x)2. To dispense with the square root, we define f(x) 

as d(P,Q+x)2 = ∑(qi-pi+x)2. When comparing sets of three pitches,  

f(x) = (q1-p1+x)2+(q2-p2+x)2+(q3-p3+x)2 

 Expanding each element by the binomial formula (a+b)2 = a2+2ab+b2, 

f(x) = (q1-p1)2+2(q1-p1)x+x2 + (q2-p2)2+2(q2-p2)x+x2 + (q3-p3)2+2(q3-p3)x+x2 

or 

f(x) = 3x2+ 2((q1-p1) + (q2-p2) + (q3-p3))x + (q1-p1)2 + (q2-p2)2+ (q3-p3)2 

 The derivative of f(x) is 

d/dx f(x) = 6x+2((q1-p1)+(q2-p2)+(q3-p3)) 
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 Setting this to zero and solving for x, we see that 

d/dx f(x) = 6x+2((q1-p1)+(q2-p2)+(q3-p3)) = 0 

6x = -2(q1-p1)+(q2-p2)+(q3-p3)) 

x = -((q1-p1)+(q2-p2)+(q3-p3))/3 

 On page 31, Callender notes that this can be generalized to sets of size i: the best 

transposition equals -∑(qi-pi)/i. We can thus determine the best transposition for each 

possible tone representation, but another step is required—we now want to compare the 

distance between the input set and each of the target sets at their best transposition. 

Again, we’ll use the formula d(P,Q)=√(q1+x -p1)2+(q2+x -p2)2+(q3+x -p3)2. Following 

Callender, we’ll adjust this value by multiplying it by the constant √3/2: this satisfies the 

intuitive sense that the Cartesian distance between, say, 012 and 013 is 1, instead of 81.65 

as provided by the steps above. Scaling the distance value in this way suggests a more 

intuitive measure for the degree of retuning between the two sets. 

  Figure 2.3 shows the best transpositions and Cartesian distances between the input 

set 0 200 400 and the various possible target sets made up of the partial classes 1, 3, 5, 

and 7. The best match, with the scaled Cartesian distance 86.8, is found with the partial 

classes 3, 7, and 1 transposed down by 757 cents to yield the pitch classes (in cents) 

1145, 212, and 443. The retunings required to map P to Q+x are small: -55, 12, and 43 

cents. Due to the transposition, the pitch class of the fundamental or root of this set is 

443. The next best match is far less convincing as a tone representation: the set can be 

mapped to partial classes 5, 3, and 7 with a scaled Cartesian distance of 160.4, but 

substantial retunings—as large as an equal-tempered semitone—are required. 
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    p1  p2  p3 
input set(P) 0  200 400                 
           best trans. cent dist. at best trans.  scaled Cart. dist. 
original(Q) q1  q2  q3   x    q1+x-p1 q2+x-p2 q3+x-p3   
1 5 3  0  386 702  -163   -163  23   139  263.9 
1 3 7  0  702 969  -357   -357  145  212  538.6 
1 5 7  0  386 969  -252   -252  -66  317  502.5 
5 3 7  386 702 969  -486   -100  16   83   160.4 
rotation 1  
5 3 1  386 702 1200  -563   -177  -61  237  369.9 
3 7 1  702 969 1200  -757   -55  12   43   86.8 
5 7 1  386 969 1200  -652   -266  117  148  399.4 
3 7 5  702 969 1586  -886   -184  -117  300  454.2 
rotation 2  
3 1 5  702 1200 1586  -963   -261  37   223  422.9 
7 1 3  969 1200 1902  -1157   -188  -157  345  518.2 
7 1 5  969 1200 1586  -1052   -83  -52  134  203.3 
7 5 3  969 1586 1902  -1286   -317  100  216  485.5 
Figure 2.3: Calculation of the best-fitting just-intonation match for the set 0 200 400.  
 
 This methodology can be applied to any table of possible tone representations: one 

could, for example, substitute equal-temperament pitch-class sets for my just-intonation 

partial-class sets to find how closely an input set fits each pitch-class set. As the input 

sets get larger, the task becomes more and more complex, particularly if we allow 

complex tone representations including high primes. The number of potential just 

intonation sets of any given cardinality is theoretically infinite, but we can choose a 

practical limit on the complexity of ratios we wish to allow in tone representations. In the 

research for this study, I have arbitrarily set this limit at 33, which yields ratios of more 

than adequate complexity to account for music tuned in twelve-tone equal temperament 

or quartertones. (Music with more precise tunings—such as the compositions of James 

Tenney or La Monte Young—would require a higher limit to describe distant just 

intonation relationships.) The limit 33 is appealing as it encompasses just over five 

octaves, and permits many complex tone representations without flooding the researcher 
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with implausibly distant representations, as might happen with a higher limit (49, say, or 

65). The intervals 32/31 and 33/32 are each approximately a quartertone. 

 Within the partial class limit of 33, there are 17 distinct pitch classes: 1, 3, 5, 7, 9, 

11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33. Taken two at a time, this results in 136 

intervals; taken three at a time, there are 680 different trichordal subsets of the 17 pitch 

classes; taken four at a time, there are 2380 tetrachords. These numbers can be 

determined by the equation n!/k!(n-k)!, where n is the number of elements and k is the 

number of items selected at a time. By this equation there are 6188 pentachordal 

combinations and 12376 hexachordal combinations.24 

 Note that we are interested here in combinations, not set classes. The pitch intervals 

between the members of our 17-note set are not equal, so transpositional equivalence is 

not a possibility. Here we are concerned instead with creating a list of possible tone 

representations for our input pitch class set. The number of possible tone representations 

with the partial class limit of 33 quickly makes it impractical to keep all possibilities in 

mind for an intuitive selection. For this reason, the computational approach described 

above becomes indispensable for large sets. For smaller set classes like trichords, we can 

often find the best match “by hand,” without resorting to computer calculations—for this 

purpose, the chart of all just intonation trichordal set classes made up of partial classes 1 

to 21 in Figure 2.4 is a useful guide. The chart lists each set class in ascending order 

beginning with 0 (this notation will be familiar from twelve-tone pitch set class theory); 

the “prime form” of each set (the form with the smallest intervals at the beginning) is 

listed on the left side, with the inversions on the right. Symmetrical sets, of course, have 

                                                
24 The interested reader may wish to consult Julian Hook’s “Why Are There Twenty-Nine Tetrachords? A 
Tutorial on Combinatorics and Enumeration in Music Theory” in Music Theory Online 13/4 (December 
2007). 
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no distinct inverted form. Because of the different just intonation implications of prime 

and inverted forms of the set classes, I have not assumed inversional equivalence as in 

canonical set theory. The just intonation sets which correspond to each set class are listed 

as a set of three partial numbers: for example, the set class 0 2 4.5 can imply either 

partials 16, 18, and 21 or 17, 19, and 22. The symbol x indicates that no just intonation 

set drawn from partial classes 1 to 21 fits the given set class. 

 Once we’ve determined several just intonation sets which closely fit the input set, 

we can choose between them by the application of Preference Rule 2, selecting the 

simplest just intonation set. If no just intonation set fits the input set reasonably well, we 

can turn to Preference Rule 3 and describe the input set as the combination of just 

intonation sets on two or more fundamentals, as in Rameau’s “dual generator” derivation 

of the minor triad in the Démonstration du principe de l’harmonie. 
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Figure 2.4: Quartertone trichords with partial classes 1 to 21, including possible just 
intonation representations  
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2. Use the simplest possible interpretation of a pitch collection: the tone 
representation with the simplest just intervals between its members. (Simple 
intervals have low integers in their frequency ratios when reduced to lowest terms.) 
The presence of the fundamental (or one of its octave transpositions) tends to 
considerably strengthen the plausibility of a tone representation. 
 
 After applying Preference Rule 1, we can say with confidence which possible tone 

representations require the least retuning to match an input set. In choosing among these 

possibilities, the main criterion is the relative simplicity of each representation: we seem 

to intuitively prefer the representation consisting of the simplest interval ratios. This 

observation recurs in the work of several theorists: earlier in this chapter, we saw 

versions of this principle from Riemann (“principle of the greatest possible economy for 

the musical imagination”) and Tenney (most compact arrangement in harmonic space). 

The subject of this section is the precise definition of “simple”: how we define simplicity 

will affect how we determine the most economical representation of a given pitch set. We 

shall also consider the role of register in choosing between tone representations, and the 

powerful effect of hearing the fundamental (or one of its octaves) as part of the sounding 

set.    

 Different rankings of consonances appear throughout the history of music theory, 

beginning with the distinction between perfect, imperfect, and intermediate consonances 

in Johannes de Garlandia’s De mensurabili musica (c. 1250). As discussed in Chapter 1, 

an important factor in the consonance or dissonance of an interval is the relationship 

between the partials of its pitches—the beating between nearby partials is the cause of 

dissonance. This explanation, introduced by Helmholtz in the late nineteenth century, is 

still widely accepted today.25 

                                                
25 Helmholtz, op. cit., 185ff.  
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  More than a century before Helmholtz’s ranking of intervals by their sensory 

concordance (degree of beating), the mathematician Leonhard Euler proposed a purely 

numerical method of determining “degrees of smoothness” (gradus suavitatis) for any 

ratio interval.26 According to the usual dictates of tuning theory, Euler begins with an 

interval expressed as a mutually prime ratio—that is, with any common factors 

eliminated. The gradus suavitatis is equal to the sum of the prime factors of both parts of 

the ratio, minus one less than the total number of prime factors. As an example, take the 

just minor third 6/5. The sum of the prime factors 3, 2, and 5 is 10; subtracting 2 (one less 

than the number of factors) gives the gradus suavitatis 8. Figure 2.5 reproduces Euler’s 

chart of the intervals in each degree of consonance from 2 to 10.27  

II  1:2 
III  1:3, 1:4 
IV  1:6, 2:3, 1:8 
V  1:5, 1:9, 1:12, 3:4, 1:16 
VI  1:10, 2:5, 1:18, 2:9, 1:24, 3:8, 1:32 
VII  1:7, 1:15, 3:5, 1:20, 4:5, 1:27, 1:36, 4:9, 1:48, 3:16, 1:64 
VIII  1:14, 2:7, 1:30, 2:15, 3:10, 5:6, 1:40, 5:8, 1:54, 2:27, 1:72, 8:9, 1:96, 3:32, 1:128 
IX  1:21, 3:7, 1:25, 1:28, 4:7, 1:45, 5:9, 1:60, 3:20, 4:15, 5:12, 1:80, 5:16, 1:81, 1:108, 
  4:27, 1:144, 9:16, 1:192, 3:64, 1:256 
X  1:42, 3:14, 6:7, 1:50, 2:25, 1:56, 7:8, 1:90, 2:45, 5:18, 9:10, 1:120, 3:40, 5:24, 8:15, 
  1:160, 5:32, 1:162, 2:81, 1:216, 8:27, 1:288, 9:32, 1:384, 1:512 
Figure 2.5: Euler’s table of the gradus suavitatis of various intervals 
 
 Euler’s formula leads to some odd results. The interval 1:9, three octaves plus a 

whole tone, has the relatively low GS of 5—this interval, always a dissonance in Western 

music, is two degrees “more consonant” than the major third 4:5. Euler’s chart also seems 

to overemphasize the effect of octave transposition on the consonance of an interval—

                                                
26 Leonhard Euler, Tentamen novae theoriae musicae (Saint Petersburg: Academy of Sciences, 1739). 
Euler’s gradus suavitatis is discussed in Michael Kevin Mooney, “The ‘Table of Relations’ and Music 
Psychology in Hugo Riemann’s Harmonic Theory,” PhD diss., Columbia University, 1996.  
 
27 The degree 1 is assigned only to the unison, which Euler does not consider a consonance because it does 
not combine two different pitches: see Mooney, op. cit., 12. 
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each octave transposition changes to GS by one degree. Euler’s gradations seem too 

broad to be practically useful: do we really hear a septuple octave (1:128), a whole tone, 

(8:9), and a minor third (5:6) as sharing the same degree of smoothness?28  

 Our criticism of discrepancies in Euler’s table points out a certain circularity in any 

attempt to use purely numerical measures to reflect our sensation of relative consonance.  

Each numerical system is judged by its match with a preconception about relative 

consonance—whether based on the musical practice of a particular style and era or on 

psychological study (whether formal or informal) of relative consonance. For a formula 

of relative simplicity to be acceptable, it must match our established view of the relative 

simplicity of intervals—it would thus appear to provide no new information. The appeal 

of such a formula, though, comes when exploring intervallic worlds which extend beyond 

current common practice: ideally, we can hope that a numerical system which matches 

our intuitions about the known intervallic world will give comparable results for an 

extended interval palette—though this is by no means certain! 

 An essential requisite for a metric of harmonic simplicity is the ability to compare 

simplicity for sets of three or more pitches, not just single intervals. Euler’s solution to 

this problem is to base the gradus suavitatis on the prime factorization of the least 

common multiple of the pitch set; this approach is based on the same considerations as 

his ranking of intervals, and is subject to similar problems.  

 One simple way of comparing the complexity of two tone representations is to 

choose the representation with lower partial numbers: given two tone representations of 

the set C5:D5:E5:F#5 as F0(24:27:30:34) or D2(7:8:9:10), we can easily recognize the 

greater simplicity of the second representation by its lower partial numbers. In comparing 
                                                
28 See Mooney, op. cit., 10-21. 
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tone representations for the same set, this is equivalent to choosing the tone 

representation with a higher virtual pitch: D2 is higher than F0. (The use of virtual pitch 

as a guide to relative “consonance” of a pitch set is common among “spectralist” 

composers.29) As a general rule of thumb, this criterion is useful, but it ignores the 

question of factorability: in our comparison of sets, we should also seek the 

representation with the simplest just intervals between its members: this fits our intuition 

that the tone representation with partial classes 8:10:12:17 should be simpler than 

7:9:11:17 despite the higher virtual pitch of the second list. A comparison of the interval 

content of each tetrachord is shown in Figure 2.6.  

8:10:12:17  7:9:11:17 
8:10 = 4:5  7:9 
8:12 = 2:3  7:11 
8:17   7:17 
10:12 = 5:6  9:11  
10:17   9:17 
12:17   11:17 
Figure 2.6 
 
Several of the intervals of the tone representation on the left reduce to simple just thirds 

and fifths, while the intervals on the right are tend to be complex relations between higher 

prime numbers. A reasonable ad hoc method of comparing tone representations would be 

to combine the two criteria, favoring the interpretation with the highest virtual pitch and 

simplest intervals between its members: if these two criteria do not coincide, a judicious 

balancing of the two desiderata could suggest a clear preference in most situations. 

 
 The following two sections explore two recent solutions to the question of 

harmonic simplicity, proposed by Clarence Barlow and James Tenney, which produce 

more quantifiable results than the rules of thumb described above. While neither 
                                                
29 Joshua Fineberg, “Musical Examples,” Contemporary Music Review 19/2 (2000): 124-128. 
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approach is a perfect solution, the ways that they address the question underscore the 

parameters that must be taken into account when comparing the relative simplicity of 

harmonies.30  

 

Clarence Barlow’s harmonicity function 

 In a 1987 article, Barlow compares the cognitive effect of simple just intervals with 

the gravitational pull of one physical body on another: 

it is undisputable that a given interval with a complex numerical 
relationship in the direct vicinity of another, more harmonic interval, falls 
into the pull of the stronger one, as it were. It thus operates as an 
approximation (for instance: an interval with the frequency relationship of 
100:199 is only 0.7% smaller than an octave and is therefore heard as an 
octave); this “bending into place” is the subject of this text.31 

 
The “bending into place” Barlow describes is clearly parallel to the notion of tone 

representation advanced here. Having identified the harmonic simplicity of an interval—

its harmonicity, in his terminology—Barlow seeks a way of quantifying the simplicity of 

various rational intervals. For Barlow, harmonicity is determined not only by the absolute 

size of the numbers in an interval’s ratio (when reduced to simplest terms), but also the 

divisibility of those numbers: their prime limit. For example, while the intervals 27/25 

and 29/23 are quite similar in the size of their constituent integers, 27/25 is easier to 

comprehend because it can be broken down into simpler steps Both 27 and 25 are 

products of simpler primes, 5 and 3, while 29 and 23 admit no such simplification. 

                                                
30 One metric for relative consonance not considered in detail here is a comparison of the virtual 
fundamentals of the sonorities according to Terhardt’s virtual pitch algorithm: a lower virtual pitch is 
equivalent to a less consonant collection. This metric is popular among spectral composers, and does not 
require the input sets to be in precise just intonation ratios. For the current purpose, though, a metric based 
on comparison of ratio intervals, such as Barlow’s or Tenney’s, is more useful. 
 
31 Clarence Barlow, “Two Essays on Theory,” Computer Music Journal 11/1 (Spring, 1987): 44-60: 44. 
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 Barlow proposes an “indigestibility” function, which gives a numerical value which 

reflects both the simplicity of an interval and the simplicity of its prime factors. 

Each integer can be described as the product of prime number factors: the indigestibility 

of any integer n is equal to the sum of 2(p-1)2/p for each of the prime factors p. Barlow’s 

list of the indigestibility of the integers 1 to 16 is listed in Figure 2.7. 

n  prime factors indigestibility 
1  1   0 
2  2   1 
3  3   2.6667 
4  2 × 2   2 
5  5   6.4 
6  3 × 2   3.6667 
7  7   10.2857 
8  2 × 2 × 2  3 
9  3 × 3   5.3333 
10  5 × 2   7.4 
11  11   18.1818 
12  3 × 2 × 2  4.6667 
13  13   22.1538 
14  7 × 2   11.2857 
15  5 × 3   9.0667 
16  2 × 2 × 2 × 2 4 
Figure 2.7: Prime factorization and indigestibility of integers 1 to 16 
 
 Note how the indigestibility values for products conveniently add—for example, 

the indigestibility of 6, which we can notate as ind(6), equals ind(2) + ind(3). The 

indigestibility function leads to Barlow’s harmonicity function for any interval expressed 

as a ratio in smallest (mutually prime) terms. For the ratio P/Q, “the more indigestible P 

and Q, the less harmonic the interval.”32 Harmonicity for the interval P/Q (with the higher 

integer as P) is defined by 1/ind(P)+ind(Q) when ind(P)-ind(Q) is positive and  

-1/ind(P)+ind(Q) when ind(P)-ind(Q) is negative. Negative harmonicities mean that the 

interval is “polarized to the higher note”—that is, that the higher integer in the ratio has is 

                                                
32 Barlow, op. cit., 45. 
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more digestible than the lower one. Thus the just major third 5/4, with a harmonicity of 

0.1190 is polarized toward the lower note, 4; while the just minor sixth 8/5 is polarized 

toward the higher note, 8, with a harmonicity of -0.1064. 

5/4 ind(5)=32/5, ind(4)=10/5 1/(42/5)  = 5/42  = 0.119048 
8/5 ind(8)=15/5, ind(5)=32/5 -1/(47/5)  = -5/47  = -0.106382 
4/3 ind(4)=6/3, ind(3)=8/3  -1/(14/3)  = -3/14  = -0.214286 
3/2 ind(3)=8/3 ind(2)=3/3  1/(11/3)  = 3/11  = 0.27272727 
Figure 2.8: Harmonicity values for some simple just intervals 
 
 The harmonicity value of the unison 1/1 is considered infinite, and the octave has a 

harmonicity of 1.00. Barlow suggests that setting a minimum harmonicity value is a 

useful and historically suggestive way of limiting pitch sets—for example, when he sets 

the minimum harmonicity to 0.06, the least harmonic interval allowed within an octave is 

the 81/64 Pythagorean major third (harmonicity 0.0600)—the most harmonic, of course, 

are the unison, octave, and perfect fifth (harmonicity 0.272727). As Barlow notes, the 

minimum harmonicity value of 0.1065 allows only the pitches of a just intonation 

diatonic scale. Intervals invoking the eleventh harmonic only appear when the minimum 

harmonicity is lowered to 0.04, while lowering the minimum harmonicity to 0.03 allows 

intervals with the thirteenth partial. For groups of three or more pitches, Barlow sums the 

absolute values of the harmonicities of all the possible intervals between constituent 

pitches. 

 By examining the “specific harmonicity” of sets, allowing a variable tuning 

tolerance so each pitch is movable (usually Barlow allows 20 cents), Barlow can search 

for the simplest tuning of a given shape (a scale, chord, etc.) by maximizing the specific 

harmonicity. This makes it possible, for example, to find the just tuning for a whole tone 

scale (accepting again 20 cents of possible retuning) which has the greatest overall 
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harmonicity. Barlow’s solution finds two equally harmonic tunings, each with a total 

harmonicity of 0.1882:33 

1/1  9/8  5/4  45/32  8/5  9/5  2/1 
1/1  10/9  5/4  64/45  8/5  16/9  2/1 
 
 The relevance of this procedure to my second preference rule should be clear—

Barlow’s sum of the harmonicities of all intervals in a set is a way of quantifying the 

relative simplicity of a given tone representation. This is one effective way of formalizing 

this aspect of the theory—in the next section, we will explore James Tenney’s “harmonic 

distance” function as a potential alternative.34 

 

James Tenney’s harmonic distance 

 Barlow’s computational approach to harmonicity yields results that seem in line 

with our harmonic intuitions, but it is difficult to visualize the abstract calculations that 

give rise to his harmonicity measures. James Tenney’s approach to quantizing harmonic 

distance is more intuitive and far easier to visualize: it is based on a lattice model of just 

intonation pitch space, closely related to both the standard 5/3 Tonnetz and the extended 

just intonation lattices of Ben Johnston. In Tenney’s pitch world, it is possible to add new 

dimensions to the lattice as necessary—each new dimension introduces a new prime 

factor.  

 Tenney’s harmonic theory is based on three basic ideas (these basic ideas are 

closely related to my five premises in Chapter 1). The first is that intervals can be 

                                                
33 Ibid., 52. 
 
34 Richard Parncutt expresses doubts about Barlow’s algorithm in “Applying Psychoacoustics in 
Composition: ‘Harmonic’ Progressions of ‘Nonharmonic’ Sonorities,” Perspectives of New Music 32/2 
(Summer 1994): 92. Parncutt argues that frequency ratios are less important for harmonic perception than 
pitch distances. 
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understood in two very different ways—either as up-and-down distances or harmonic 

qualities. The second is that these harmonic qualities can be matched to the just 

intervals—the intervals defined by simple frequency ratios. And the third is tolerance—

the idea that we still recognize just intervals even when they aren’t precisely in tune. 

Using these three basic ideas—the dual nature of interval as both distance and harmonic 

quality, the correspondence of interval qualities to just ratios, and tolerance for mistuned 

intervals—Tenney develops a multidimensional harmonic space, where each spatial 

dimension represents a different prime number factor. Figure 2.9 shows an example.  

 

Figure 2.9: Tenney’s harmonic space—in this case, limited to multiples of 2, 3, and 
535 
 
 This example is limited to just three dimensions, representing the factors 2, 3, and 

5.  Note that Tenney does not invoke octave equivalence, which would flatten this 

diagram into a familiar two-dimensional Tonnetz. Tenney’s idea of harmonic space 

                                                
35 Example from James Tenney, “The Several Dimensions of Pitch,” in The Ratio Book, ed. Clarence 
Barlow (Cologne: Feedback Studio Verlag, 1999). 
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allows the addition of more dimensions to account for higher prime factors—for 

example, a fourth dimension would be required to include the 7/4 natural seventh.  

 Tenney’s harmonic space is discrete rather than continuous—tolerance means that 

pitches near a point on the lattice can be understood as representing that point. Roughly 

speaking, pitches close together in harmonic space are consonant with one another, while 

distant pitches are heard as more dissonant. Tenney provides a formula for calculating 

relative distances in harmonic space: given the ratio interval a/b reduced to its simplest 

(mutually prime) form, the harmonic distance between the pitches of the interval will be 

equal to the base two logarithm of a times b: HD(Fa, Fb) = log2(a)+log2(b) = log2(ab). 

This assigns the value 1 to the smallest step in harmonic space, the octave. Other 

harmonic distances between ratios are shown in the table in Figure 2.10.    

 
interval 1/1 10/9 9/8 8/7 7/6 6/5 5/4 9/7 21/16 4/3  11/8 
cents 0 182 204 231 269 316 386 435 471 498 551 
harmonic distance 0 6.49 6.17 5.80 5.39 4.90 4.32 5.98 8.39 3.58 6.46 
              
interval 7/5 45/32 3/2 25/16 8/5 13/8 5/3 27/16 7/4 15/8 2/1 
cents 583 590 702 773 814 841 884 906 969 1088 1200 
harmonic distance 5.13 10.49 2.58 8.64 5.32 6.70 3.90 8.75 4.81 6.90 1 

Figure 2.10: Distances for some simple just ratios according to Tenney’s formula for 
harmonic distance. 
 
 The distance between any two points on the lattice is calculated by the sum of all 

the steps in between the points, but steps along the low prime-number axes are 

considered shorter than those along the axes of the higher primes. The axes are weighted 

by their logarithms base 2: thus, a step on the 2 axis is a harmonic distance of 1, a step on 

the 3 axis is a harmonic distance of 1.58, and so on. Steps along each axis can be summed 

for composite intervals: thus the perfect fifth 3/2 can be seen as a combination of one step 

on the 3 axis and one on the 2 axis, for a harmonic distance of 1 + 1.58 = 2.58. More 
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complex intervals will require more steps—thus the harmonic distance between pitches in 

the ratio 15/4 is equal to the sum of the distances 3/1, 5/1, 1/2, and 1/2. A step along any 

of the prime number axes adds the base-2 logarithm of that prime to the harmonic 

distance of an interval.  

 Tenney’s function provides a convincing metric for the relative harmonic distance 

between intervals. How can this be extended to compare the simplicity of sets with three 

or more pitches? Tenney proposes that “given a set of pitches, we will interpret them in 

the simplest way possible. This can be translated into harmonic space terms by saying 

that it will be the most compact arrangement in harmonic space.”36 This “compactness in 

harmonic space” is quantified in Tenney’s article “On ‘Crystal Growth’ in Harmonic 

Space.”37 In this article, he explores how one might “grow” crystals in harmonic space by 

adding new points to a lattice one by one, each time at the point in the lattice which 

minimizes the sum of all the harmonic distances between points in the resultant set. This 

is comparable to Barlow’s summation of all harmonicity values between pitches in a set 

to determine an overall harmonicity for the whole set: both Barlow’s and Tenney’s 

methods attempt to describe the simplicity or harmonicity of a set of three or more 

pitches by summing the simplicity values of all of the pairs within the set. Using 

Tenney’s method of summing the harmonic distances between all the members of a set, 

                                                
36 Tenney and Belet, “Interview with James Tenney,” 462. 
 
37 James Tenney, “On ‘Crystal Growth’ in Harmonic Space (1993-1998),” Contemporary Music Review 
27/1 (2008): 47-56. 
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we can compare the relative compactness or simplicity of multiple sets with the same 

number of members.38 

 

Comparison of metrics for harmonic simplicity  

 Both Barlow and Tenney offer plausible ways of evaluating the relative 

harmonicity of just intonation pitch sets; we have also discussed how virtual pitch (after 

Terhardt) can be used as a measurement of harmonic simplicity. In this section, we will 

compare the efficacy of each metric in choosing the best tone representation for a specific 

pitch set: the chord in Figure 2.11, from Schoenberg’s Piano Piece Op. 11, No. 2, m. 10.39 

 
Figure 2.11: Chord from Schoenberg’s Piano Piece, Op. 11, No. 2, m. 10 
 
 Figure 2.12 summarizes how the three metrics would rank the possible tone 

representations of the chord in Figure 2.11. The starting point for this comparison is a list 

of the 25 best-fitting tone representations, produced by applying Preference Rule 1. The 

leftmost column labels the sets from a to y. The degree of retuning required to map the 

sounding pitches to each candidate for tone representation is shown in the next column: 

the retuning distances range from 7.1 to 47.2 cents. The next column shows the 

fundamental of each tone representation, indicated in cents deviation from the nearest 

equal-temperament pitch class; the subsequent “8ve” column gives the register of the 

fundamental, in the standard notation where middle C = C4. The four central columns 
                                                
38 Only recently have attempts been made to treat larger sets holistically, not just as the sum of intervals: 
see Norman Cook and Takashi Fujisawa, “The Psychophysics of Harmony Perception: Harmony is a 
Three-Tone Phenomenon.” Empirical Musicology Review 1/2 (2006): 106-126.  
 
39 This piece is discussed in more detail later in this chapter, with an analysis of the “chorale” in measures 9 
to 13. 
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show the tone representations of each pitch in the chord. In the calculations of 

harmonicity and harmonic distance for each interval, the interval ratio between each two 

members of the tone representation would be reduced to its simplest (mutually prime) 

form. (This step is not shown here.) The three rightmost columns show the ranking of the 

candidates by each of the three metrics: Tenney’s harmonic distance, Barlow’s 

harmonicity, and the virtual fundamental (which follows the list of fundamentals given in 

column two: a high fundamental indicates a relatively simpler harmony). The list is 

sorted by the rankings produced by Tenney’s metric, and the rankings of each tone 

representation by the other two metrics are given for comparison. In all cases, 1 is the 

simplest (most harmonic), and 25 is the most complex (least harmonic). 
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 retuning root:   tone representations of:  Tenney Barlow Virtual pitch 
 distance pitch class 8ve G E-flat A D  ranking  ranking  ranking 
a 38.7 G-12¢ 0 8 13 18 24  1  2  3  
b 42.0 E-flat+19¢ 1 5 8 11 15  2  4  1  
c 7.1 C-2¢ 0 12 19 27 36  3  3  6  
d 40.4 A+27¢ 0 7 11 16 21  4  7  2  
e 29.5 G+5¢ -1 16 25 36 48  5  1  10  
f 38.7 E-flat-1¢ 0 10 16 23 30  6  6  5  
g 34.7 F+9¢ 0 9 14 20 27  7  5  4  
h 25.5 A+41¢ -1 14 22 31 42  8  11  8  
i 28.7 B+12¢ -2 27 42 60 80  9  9  22  
j 45.5 E-flat+32¢ -1 20 31 44 60  10  10  15  
k 47.2 D+18¢ -1 21 33 48 64  11  12  17  
l 27.8 E+19¢ -1 19 30 42 56  12  15  14  
m 26.3 B+19¢ -2 25 40 56 76  13  17  21  
n 35.5 F-6¢ -1 18 29 40 54  14  8  13  
o 31.8 D+6¢ -1 21 34 48 64  15  13  18  
p 33.2 A-flat-6¢ -1 15 24 34 46  16  18  9  
q 44.1 B-flat+29¢ -1 13 21 30 40  17  14  7  
r 36.0 C-sharp-19¢ -1 23 36 52 68  18  21  20  
s 27.1 A-41¢ -2 29 46 66 88  19  16  24  
t 45.7 C-sharp-2¢ -1 23 36 50 68  20  19  19  
u 31.1 F-sharp+5¢ -1 17 27 38 50  21  20  11  
v 38.5 F-sharp-12¢ -1 17 27 38 52  22  22  12  
w 40.8 A-flat-20¢ -2 31 48 68 92  23  25  25  
x 35.4 E-flat-49¢ -1 21 33 46 62  24  24  16  
y 42.1 A-27¢ -2 29 46 64 88  25  23  23  

Figure 2.12: Comparison of Tenney, Barlow, and virtual pitch rankings of harmonic 
simplicity 
 
 The three metrics give roughly similar results, though the Tenney and Barlow 

rankings resemble one another more than the virtual fundamental ranking. This is 

because, as noted above, the virtual fundamental is based solely on the lowest partial 

number of the tone representation, and otherwise disregards the complexity of the 

intervals within the set. This is why the virtual fundamental ranking finds tone 

representation e much less harmonic (at rank 10) than either the Tenney or Barlow 

metrics (ranks 5 and 1, respectively). The inclusion of the partial 25 makes all the partial 

numbers high in the overtone series (harmonic partials 16, 25, 36, and 48), resulting in a 

low virtual fundamental at G+5¢-1. Used as a metric, the virtual fundamental is insensitive 

to the simple relationships in the proportion 16:36:48, which reduces to 4:9:12. This 
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simple proportion accounts for the high ranking of this tone representation by the Tenney 

and Barlow metrics, despite the inclusion of the more distant partial number 25. 

 The Tenney and Barlow rankings identify the same simplest seven sets (ranks 1 to 

7) and least simple four sets (22 to 25). The differences in the way they order the sets 

tend to reflect how much each method weighs the effect of more complex partial numbers 

in reducing a tone representation’s degree of simplicity. Barlow’s method tends to prefer 

stringing together lower primes to invoking higher primes: we see this in its top-ranked 

choice, which represents the pitch E-flat as 25 (5 × 5) for the same pitch Tenney’s 

algorithm would designate as 13 (in its top-ranked choice). In general, Barlow’s method 

gives a greater weight to interval simplicity: the presence of an interval made up only of 

multiples of 3 and 2 (three-limit intervals, in Harry Partch’s terminology) contributes 

significantly (perhaps too significantly) to Barlow’s overall harmonicity score. These 

simple ratios also contribute to shorter harmonic distances in Tenney’s harmonic distance 

calculations: but the curve drops less sharply for Tenney, meaning that the inclusion of 

higher primes has a less drastic effect on the overall simplicity. Thus, it could be said that 

Tenney’s metric is more liberal about the move to higher prime limits. 

 In making our selection from this list, any of the three metrics offer a reasonable 

way of reducing all the candidates to a few possibilities: we could use any of the metric 

to find a “top ten” of likely tone representations. At that point, we will need to consider 

additional factors besides simplicity to make a final choice. The first of these factors is 

the presence or absence of the fundamental: as the final clause of Preference Rule 2 

states, “The presence of the fundamental (or one of its octave transpositions) tends to 

considerably strengthen the plausibility of a tone representation.” Among the top 
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contenders, this preference would favor a, b, d, e, and f. The presence of the fundamental 

as one of the lower members of the chord seems to have a greater impact than when it 

appears at the top of the chord: thus a and e seem particularly strong, since they identify 

the lowest sounding pitch as an octave of the fundamental (partial number 8 and 16 

respectively). Tone representation b is also strong by this criterion, with the “tenor” E-flat 

as partial number 8. A second consideration is the balance of harmonic simplicity against 

Preference Rule 1’s reduction of retuning from the heard set to the tone representation. In 

this case, tone representation c is particularly strong: it takes far less adjustment to fit the 

equal-tempered pitches of the heard chord to this just tone representation. 

 Given these considerations, I would select a, b, and c as the three top candidates for 

this chord’s tone representation: in addition to scoring high in each simplicity metric, a 

and b contain an octave equivalent of the fundamental in the low register, and c 

convincingly minimizes retuning. I find Tenney’s number 1 (a) more convincing than 

Barlow’s number 1 (e)—to me, the representation of E-flat as 13 is more convincing than 

the representation as 25, particularly because it keeps the virtual fundamental from 

becoming too low. All of these decisions are highly contextual, though: in a musical 

framework that emphasized composite five-limit intervals like the augmented fifth C-G-

sharp and avoided extended just relationships with primes like 13, Barlow’s favored tone 

representation might seem more convincing than Tenney’s candidate.  

 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—136—   

3. Use the smallest possible number of fundamentals; invoke multiple fundamentals 
only if they yield a significantly simpler interpretation than is possible with a single 
fundamental.  
  
 The third preference rule governs the segmentation of large sets into combinations 

of tones on different fundamentals. As noticed in the fifth premise of Chapter 1, our sense 

of harmonicity often leads to the division of complex pitch sets into multiple simpler 

harmonic subgroupings—the workings of this perceptual segmentation seem closely 

related to problems in visual scene analysis and Gestalt psychology, where proximity and 

similarity between objects play a major role.40  

 Like the first two rules, this rule follows Riemann’s “principle of the greatest 

possible economy for the musical imagination”: we minimize the number of different 

harmonic roots that are simultaneously active. We resolve pitches into a single harmonic 

root when we can, but when we can’t, we find the simplest possible consistent 

explanation, invoking as few roots as possible. More than the other rules, though, this 

rule is highly context-dependent: segmentations will vary substantially based on stylistic 

assumptions as well as the memory of previous events within a work. The establishment 

in a work of a “prime limit” (after Partch) may have a strong effect on the complexity of 

the tone representations we are willing to entertain before supposing a new, separate 

harmonic entity.   

 Because of the sensitivity of this rule to context, the general discussion here will be 

brief. Bregman’s “old-plus-new” heuristic will often be useful: stated succinctly, this 

proposes that “if part of a present sound can be interpreted as being a continuation of an 

                                                
40 The division of complex sonorities into simpler harmonic sonorities has appeared in a variety of music 
theories, including Schoenberg’s segmentation of a chord from Erwartung discussed in Chapter 1. 
Rameau’s “dual generator” approach to the minor triad in the Démonstration du principe de l’harmonie 
(Christensen, op. cit., 162-168) is a well-known example; the minor chord A-C-E has two generators: A-E 
yields the perfect fifth, and C-E the major third.  
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earlier sound, then it should be.”41 The division of complex chords into smaller subsets is 

demonstrated at length in Chapter 4, on Grisey’s Vortex Temporum. In the remainder of 

this chapter, the application of the three preference rules for tone representation will be 

demonstrated in analyses of excerpts from Ligeti’s Melodien and Schoenberg’s Piano 

Piece op. 11, no. 2. 

 

Tone representation in Ligeti’s Melodien (1971) 
 
Microtonality and overtone-based harmony fascinated György Ligeti during 

several periods in his long compositional career since as early as the 1950s: Richard Toop 

discusses an abandoned electronic piece from the late 1950s based on a “synthetically 

produced overtone series” of sine tones.42 Toop quotes Ligeti on this abandoned work: 

“My idea was that a sufficient number of overtones without the fundamental would, as a 

result of their combined acoustic effect, sound the fundamental... I imagined that slowly, 

different composite sounds would emerge and slowly fade away again like shadows, I 

intended to produce forty-eight layers of sound.”   

Of another late 50s work, Apparitions (1959), Ligeti stated “I should like to add, 

apropos of Apparitions, that I have used the individual voices in the orchestra, especially 

the strings, as though they were partials—they are sounds in themselves—as though they 

were partials of an even more complex sound. Here there is an analogy to the work in the 

electronic studio.”43 This suggests a close connection between the proto-spectralist idea 

of scoring partials for an instrumental ensemble and the early cluster-harmony works 

                                                
41 Bregman, op. cit., 261. 
 
42 Richard Toop, György Ligeti (London: Phaidon, 1999): 60.  
 
43 György Ligeti, Ligeti in Conversation (London: Eulenburg, 1983): 90. 
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which first brought Ligeti widespread attention in the West. Whole-tone cluster 

formations can easily be heard as consecutive partials in the range from the seventh to the 

twelfth: this suggests a more complex and subtle harmonic meaning for such clusters than 

usually recognized by analysts who treat them as atonal sets. 

We can thus see a thread of continuity in Ligeti’s musical concerns from the 

beginning of his career to recent works like the Hamburgisches Konzert and Violin 

Concerto: this suggests new ways of thinking about harmony in works from Apparitions 

and Atmospheres to the 1965 Requiem that would take account of such “spectral” 

characteristics. 

Ligeti’s first period of exploring microtones in instrumental music begins in 1966, 

with the Concerto for Cello and Orchestra, and stretches into the early 1970s. During this 

period, Ligeti seems to be experimenting with various ways of using microtonal pitches. 

In the first movement of the Cello Concerto, Ligeti writes very high natural harmonics 

for the soloist—these include the microtonal 11th and 13th harmonics, which fall 

“between the keys” of the tempered twelve-note scale. In the String Quartet No. 2 (1968), 

explicitly notated microtones are used in cluster-like formations. Ramifications, with its 

two string ensembles tuned approximately a quartertone apart, turns microtonality into a 

formal principle—what’s more, the interest in scordatura hints at developments to come 

in the 1990s. (Near the end of Ramifications, a sul ponticello double bass plays a timbre 

rich in high partials—these suggest the same kind of “between the keys” harmonics heard 

in the Cello Concerto, and reflect the texture of scordatura microtones in the rest of the 

piece.) The Chamber Concerto (1970) and Melodien (1971) are not microtonal works 

(they’re written in standard twelve-tone notation), but bear the marks of Ligeti’s 
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microtonal experiments—here, overtone configurations are powerful shaping forces on 

the harmony at important junctures (see the analysis of an excerpt from Melodien below). 

In Ligeti’s next work, the Double Concerto (1972), he has returned to explicitly notated 

microtones—the musicologist Bob Gilmore has suggested that Ligeti’s 1972 encounter 

with the American microtonalist Harry Partch was a significant influence on this work.44 

 The mid and late 70s show Ligeti’s attention turning away from these specifically 

microtonal issues, as he focused on the opera Le Grand Macabre and minimalist-inspired 

works such as Monument-Selbstportrait-Bewegung. Ligeti’s interest in microtones 

emerges again in the early 1980s, with the Trio for Horn, Violin, and Piano (1982). 

(Ligeti’s student Manfred Stahnke, a pupil of Ben Johnston, may have been a spur to new 

intonational experiments.) Here we see the use of just intonation achieved by the use of 

the natural harmonics of the horn. Such natural horn microtones are also prevalent in the 

Piano Concerto (1988) and throughout the Hamburgisches Konzert (1999/2002), for solo 

horn and orchestra with four natural horns. (The Hamburgisches Konzert also represents 

Ligeti’s response to the spectral music of Grisey and Murail—see particularly the fifth 

movement, titled “Spectra.”) The use of scordatura, as well as notated pitch inflections, 

adds microtonal color to the 1993 Violin Concerto, and as we have seen, the first 

movement of the Viola Sonata (1991-94) uses the overtone series as the basis for a 

mournful Romanian hora lungǎ.  

 The range of microtonal techniques found in Ligeti’s work is remarkable—

microtonality is a compositional issue that Ligeti returned to over and over again, with 

different solutions each time. Unlike many composers, Ligeti has never formalized his 

harmonic practice into any sort of strict system—rather he prefers to experiment with 
                                                
44 Bob Gilmore, “The Climate Since Harry Partch,” Contemporary Music Review 22/1-2 (2003): 27-30. 
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various kinds of “hybrid microtonality,” reinvented for each piece.45 (Throughout his 

career, Ligeti tended to be suspicious of systematization, a tendency that put him at odds 

with the integral serialists of the 1950s and 60s.) In his pitch designs, Ligeti uses a 

mixture of intuition and tools from various theories, including just intonation. Tone 

representation is a useful tool in exploring these mixed harmonic approaches. Even with 

no single common compositional technique or organizing principle, the way the listener 

experiences these harmonies can be addressed by an analytical approach with strong roots 

in perception. Tone representation provides a neutral ground from which comparisons 

can be made between different eras of Ligeti’s harmonic practice, or even between 

different harmonic worlds in the same piece. 

* * * 

 Ligeti’s Melodien for orchestra (1971) is not a microtonal piece (it’s written 

entirely in standard twelve-tone notation), but certain passages strongly imply tone 

representations which involve microtonal intervals such as 8/7 (231 cents) and 11/8 (551 

cents).46 These just microtonal intervals are approximated to the nearest semitone—in a 

sense, then, one could argue that these passages are examples of just-intonation 

microtonal music forced into a semitone grid. If, as I would argue, we tend to bring the 

same harmonic intuitions to all kinds of music, the harmonic processes we’ve seen in just 

intonation contexts should also apply to music written in twelve-tone equal temperament. 

By recourse to the tools of tone representation, we can begin to see how an “atonal” work 

                                                
45 The phrase “hybrid mikrotonalitas” appears in one of Ligeti’s sketches for the Violin Concerto at the 
Paul Sacher Stiftung (Folder 1, 80). 
 
46 Portions of this analysis were originally published in my article “Tone Representation and Just Intervals 
in Contemporary Music,” Contemporary Music Review, Vol 25/3 (June 2006): 263-281. 
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like Melodien might be understood instead as what Schoenberg called “pantonal”—that 

is, based on pitch relationships drawn from the higher reaches of the overtone series.   

 My analysis of the passage from mm. 11-19 describes the pitch structure as 

representing the upper partials of a shifting fundamental, invoking tone representations of 

partial classes up to 19. In the discussion that follows the analysis, I will compare my 

interpretation of the piece with Jonathan Bernard’s analysis of the same passage as a 

series of distance-based transformations in pitch space. Bernard’s analysis is efficient and 

convincing at describing distance-based relationships between the pitch sets of the 

passage, but fails (as it must, given its theoretical assumptions) to address the aspects of 

harmonic quality, rootedness, and tone representation which can be examined by ratio-

based theoretical tools.      

 
Figure 2.13: Pitch collections in Melodien, mm. 11-19 
 

Figure 2.13 is an abstraction of all the pitches from m. 11 to m. 19 of Melodien 

(an excerpt of about 40 seconds). Bernard has discussed part of this section in terms of 

transformations in pitch space (that is, the space of pitches in register, as opposed to 

modular pitch class space).47 In this approach, interval is conceptualized as distance; 

Bernard’s analytical diagram of the music on graph paper, with each square representing 

a semitone, makes the analogy of interval to spatial distance explicit (see Figure 2.14).48 

 
                                                
47 Jonathan Bernard, “Ligeti’s Restoration of Interval and Its Significance for His Later Works,” Music 
Theory Spectrum 21/1 (Spring 1999), 1-31: 3-10. 
 
48 Note that Bernard’s method here is even more purely distance-based than pitch-class-set theory because 
he excludes octave equivalence. 
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Figure 2.14: Bernard’s graph “in pitch space” beginning at m. 13 of Melodien. The 
numbers 1 to 57 represent labels Bernard assigns to each of the individual 
“melodies” in this section.  
 
 In the passage of Melodien illustrated in his pitch-space graph, Bernard proposes a 

series of distance-preserving transformations in pitch-space to account for the progression 

from one “melody” to the next (Bernard, 15-18). These three transformations are: 

1) the “flip,” which moves a pitch from a distance X above a given pivot to the same 

distance X below (or vice versa); 

2) the “spin,” which inverts a set of three or more pitches in pitch space, with the axis of 

inversion chosen to keep them within the same pitch-space boundaries; and 

3) the “glide,” which replicates the distances between two or more pitches with added 

pitches at a different transposition level (or as Bernard prefers to conceive of the 

transformation, the pitches “are transposed to a new location without canceling their 

presence at the original location”). 
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These transformations allow Bernard to make some powerful observations about the 

progression from one set of pitches-in-register to the next:  

Even a cursory glance at this graph reveals that only one note, the highest 
(A6), once established is retained by every subsequent melody in the 
passage. In other words, there is no fixed skeleton, but a highly mobile 
one, one that grows mainly out of the vertically adjacent interval content 
of the initial short melodies, gradually expanding and moving downward 
in range. The melodies still conform to these intervals, but in a somewhat 
unpredictable way: it is as if their sizes and qualities were fixed, rather 
than their positioning relative to one another. In fact, using a few simple 
operations it is possible to describe all of these successions of interval 
stacks—after the first few, that is, when a viable repertoire of intervals is 
still being assembled—as transformations in pitch space that deal directly 
with these interval qualities rather than with pitch-class or even pitch 
content.49 

 
The problem with this mapping of pitch to an abstract spatial continuum (with interval as 

distance between points on that continuum) is that the map and the territory can easily be 

confused; it can become unclear whether the analysis is referring to the actual sound of 

the music, or merely describing patterns in the analytical graph. While Bernard does 

mention “interval quality,” in this context, he seems to mean nothing other than “interval 

size.” In the analyses of other Ligeti works that follow in this article, it seems clear that 

Bernard is not interested in engaging “quality” in the sonic sense which I discuss here—

rather, he holds to the “distance” approach to interval.  

 One might of course argue that by constantly keeping in mind which pitches the 

points on the graph represent, the risk of getting lost in abstractions based solely on the 

graph is eliminated. While the importance of constant comparison of the phenomenon 

with its abstract model is essential for all analysis, in this case the limitations of interval-

as-distance mean that the shapes and transformations described by Bernard renounce any 

essential connection with the sounding pitches. The scale of the graph is entirely 
                                                
49 Bernard, op. cit., 10. 
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irrelevant to Bernard’s transformations, which could easily refer to a graph where each 

square represented an octave or a single cent. While the transformations would still hold 

true as a description of the new stretched or compressed music, the failure of the theory 

to discriminate between these scales seems to indicate a distressing lack of specificity. 

Turning from distance intervals to just intervals, we can arrive at a very different 

reading of the passage as an example of changing tone representations. The excerpt 

begins with a unison A6. Given the lack of a context which would imply otherwise, it 

seems reasonable to assign this pitch the simplest possible tone representation of 

“fundamental”: A(1)—see Figure 2.15. 

 

 
Figure 2.15: Tone representations in Melodien, mm. 11-19 
 

At 13, an F appears below the A (this dyad is doubled an octave above by the 

celesta, but this does not significantly affect our harmonic understanding). The simplest, 

most “economical” way to hear the F/A dyad is as a just major third, F(4:5). At this 

moment, the tone representation of the A changes—it changes from a fundamental (1) to 

a just major third (5) above the new fundamental F (4).50  

The addition of E-flat in m. 14 does not affect our sense of F as root—rather, it 

sounds like the approximated seventh harmonic of F(7:8:10). Other tone representations 

                                                
50 The constant reevaluation of different tone representations to select the simplest representation reflecting 
new data is an example of Daniel Dennett’s “multiple drafts” theory of consciousness. See Dennett, 
Consciousness Explained (New York: Little, Brown and Co., 1991). Such a theory is comparable to 
Tenney’s description of changing perceptions quoted on p. 93, above.  
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of these three pitches are possible, such as E-flat(8:9:11), B(10:11:14), G(13:14:18), or 

D(17:19:24), but with no reason to favor these more complex representations, the more 

economical F(7:8:10) is a better choice. The F has also been already established as a 

fundamental in measure 13, so a sort of “inertia” makes us likely to keep the same partial 

classes for the F and A. In music which rounds off microtonal just intervals to a semitone 

grid, it is necessary to accept larger degrees of tolerance than in music rounded to a 

quartertone grid—thus, the 200 cent interval E-flat/F is taken to represent 7:8 (231 cents) 

here, with a 31 cent discrepancy between the heard and referential intervals. While F and 

A are still represented by the same partial classes as in m. 13, the representation of the 

sonority must be understood as occurring an octave higher in the harmonic series 

(changing the representation of F from 4 to 8), to allow the inclusion of E-flat as F(7). 

The move into higher integers corresponds with the addition of more complex and less 

traditionally consonant intervals. 

At measure 16, the addition of an F-sharp creates a harmonically ambivalent 

situation. We can fit the new collection into a F spectrum, F(14:16:17:20), which requires 

a move still higher into the overtone series, reinterpreting F from 8 to 16. However, a 

competing interpretation emerges which better satisfies the “Law of Economy”: we can 

hear the collection as an approximation of B(10:11:12:14). It’s difficult to choose 

between the two; our sense of the F fundamental is weakened, but the sense of B as 

fundamental is still not established (particularly as the pitch class B is not part of the 

collection). The addition of a B to the sonority in m. 18 resolves this ambiguity, and 

decisively shifts our sense of fundamental from F to B. The fifth B/F-sharp (one of the 
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simplest just intervals) plays a strong role in confirming B as the root. So, now our 

Tonvorstellung of the total sonority is B(8:10:11:12:14). 

As our sense of fundamental changes from F to B, the harmonic sense we make of 

each of the pitches also changes: for example, the E-flat stops sounding like a natural 

seventh above the fundamental, or F(7), and takes on the quality of a major third: B(10). 

The tone representation of the interval F/A changes from F(8:10), at 386 cents, to 

B(11:14), at 418 cents. Our tolerance for mistuning of these just intervals makes it 

possible to hear the equal-tempered third of 400 cents as an approximation of either 

interval, and as a pivot between the two fundamentals. Thus, by accepting a degree of 

tolerance in our tone representations, complex just intonation patterns can be conveyed in 

twelve-tone equal temperament.  

The added D in measure 19 throws our recognition of B harmony into doubt, 

much as the F-sharp weakened our sense of the F fundamental in m. 16. We can persist 

with a B tone representation of B(16:19:20:22:24:28), but the simpler option 

G(10:12:13:14:15:18) is more aurally convincing—and, analogously to the arrival of B in 

m. 18, the G eventually appears a fifth below the D to confirm this reading. Note that the 

shift in fundamentals from B to G mimics the shift from A to F at the beginning of this 

passage. 

 In the bars following m. 19, Ligeti continues to add pitches more rapidly; our 

analysis can keep up with only a few more additions before the density of pitches 

overwhelms our capacity to discern a clear harmonic structure. After this point, a motivic 

or transformational analysis (like Bernard’s analysis using flip-spin-glide operations) 

could better describe the music’s progress. The tone representations discussed here can 
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easily coexist with such atonal, piece-specific approaches to analysis. Motivic and atonal 

interval structures may also take part in purely harmonic processes, which tone 

representation can describe in detail. 

 Unlike motivic or transformational analyses, which focus on unique intraopus 

relationships such as the repetition or transformation of characteristic motives or pitch 

collections, this analysis has used tone representation to describe how the unfolding of 

pitches creates a sense of shifting just intonation sonorities. In place of unique, piece-

specific relationships, the set of just intervals is taken as an interopus constant governing 

our harmonic perception. That is, instead of assuming a completely atonal world, in 

which the only landmarks are motivic correspondences within a work, an analysis using 

tone representation posits a world of extended tonality governed by a consistent set of 

just harmonic relationships. 

   

Tone representation in Schoenberg’s Op. 11, No. 2, “chorale” 
 
 In choosing one tone representation over another, we are not merely dealing with 

abstractions—these choices have something concrete to say about our musical 

understanding of each pitch in the collection and its relationship to all the others. When 

we perceive a diminished fifth as 11/8 instead of 7/5, it has different tonal implications 

and as Riemann notes, an “entirely different expressive value, character and content.” A 

change in the understood root changes the meaning of each of the chord tones—a pitch 

that’s relatively stable in one reading can become exotic and harmonically distant in 

another. Even if we do not precisely agree on the correct tone representation for a given 

pitch set, the terminology introduced here offers a way of discussing what we hear—
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asserting one tone representation over another is a meaningful, and above all, a musical 

activity. We can continually test our analyses by playing potential roots under a harmony, 

or experimentally adding pitches to see how they strengthen or weaken our hypotheses. 

 This technique offers an alternative to existing analytical methods for works from 

the atonal repertoire. Unlike pitch-class set analysis, which focuses on motivic 

relationships between chords, tone representation allows us to closely examine the 

tensions within a single harmony in a way that’s sensitive to vertical spacing and the 

delicate balance of different tonal implications. This sensitivity is particularly valuable 

for the music of the last century, in which striking individual sonorities are such an 

important feature. Rather than attempting to illustrate an organic coherence through the 

repetition of identical harmonic motives, we can discuss changing color and harmonic 

“rootedness.” We don’t need to compare these chords to one another to get at their 

internal tensions and qualities, since we can refer to a consistent interpretive strategy 

based on the overtone series instead. This approach allows us to discuss post-common-

practice harmony from a phenomenological, rather than an organicist viewpoint. We can 

drop the assumptions of organic unity through varied repetition and still have much to say 

about harmony! Our intuitions about relative consonance or dissonance (as complexity of 

ratio) are well described by this kind of tone representation, as are our intuitions of 

harmonic roots. 

 Figure 2.16a is the “chorale” from Schoenberg’s Piano Piece, op. 11, no. 2. 

Because the tetrachords of the chorale fall into different set classes, this passage poses a 

challenge to pitch class set analysis. David Lewin has discussed this passage at length, 

using Klumpenhouwer networks to answer the question “Is there some way in which we 
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can sense the harmonic field of the phrase as unified, rather than diverse?” He sets out an 

agenda for analysis: to relate the tetrachords of different pc-set class into a unified overall 

view, which includes the five- and six-note sets at the end of the phrase.51  

 

                                                
51 David Lewin, “A Tutorial on Klumpenhouwer Networks, Using the Chorale in Schoenberg’s Opus 11, 
No. 2,” Journal of Music Theory 38/1 (1994): 79-86. 
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Figure 2.16 
a: The “chorale” in Op. 11, No. 2, with set classes labeled 
b: Table of plausible tone representations for each chord—most convincing 
interpretations in boldface 
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 Unlike pitch-class set analysis, which tends to emphasize motivic relationships 

between sonorities, tone representation makes it possible to discuss the competing root 

implications and inner harmonic tensions within a single chord. Figure 2.16b lists several 

plausible tone representations of each chord of the chorale, with the most convincing 

representation marked by boldface type. (On a few occasions, two representations seem 

equally convincing, and both are in boldface.) In this table, I’ve listed only the best 

matches—based on closeness of fit and simplicity of intervals—from the list of 

possibilities produced by computer calculation. A typical situation can be seen in my 

analysis of the first chord, B-flat E F-sharp A. The tone representation which entails the 

least retuning is A-3¢(17:24:27:32)—according to this representation, B-flat is heard as 

the seventeenth partial of a notional low A fundamental (lowered by 3 cents from equal 

temperament), E is heard as the twenty-fourth partial, and so on. While the intonational 

fit is very precise—with a distance of only 5.41 between the heard chord and its just 

intonation representation—the intervallic relationships between the pitches are complex 

and obscure. For example, we’re asked to hear the interval from B-flat to F-sharp as the 

exotic interval 17:27, though we would intuitively prefer a simpler interpretation like 5:8, 

a just minor sixth. We can find a simpler interpretation of the whole tetrachord by 

accepting a greater distance between the heard set and its just intonation representation. 

The tone representation F-sharp+12¢(10:14:16:19) provides the most convincing 

compromise between intonational accuracy and simplicity of interval ratio—the inclusion 

of the fourth octave of the fundamental (16) further strengthens its appeal. 

 A complete discussion of Figure 2.16 is impractical here, but I would like to point 

out a few general observations which illustrate how the theory of tone representation 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—152—   

might contribute to an analytical reading. When we look at the most likely roots for each 

chord in the passage, we see the frequent repetition of just a few pitch classes (allowing 

for some variability of tuning): F, F-sharp/G-flat, and G. These three pitches account for 

nine of the eleven chords of the chorale. G is the root of Chord 3 at the end of the first 

gesture, as well as Chord 8 and the cadential Chord 11, although the chords differ in 

cardinality and set class. An upward progression by semitone from one “fundamental 

bass” pitch class to the next recurs frequently—first as F-sharp to G from Chords 2 to 3, 

then as F to F-sharp to G in Chords 6, 7, and 8. This “fundamental bass” progression is 

repeated in Chords 9 to 11 as F to G-flat to G, even though the pitch content of the chords 

is different. The fundamental bass progression cuts across the phrase structure in an 

interesting way, inviting the listener to group Chords 6, 7, and 8 across the notated phrase 

boundary between Chords 6 and 7. This is one way we could make sense of the 

crescendo beginning below Chord 6—the increase in intensity accompanies the 

beginning of the ascent in the fundamental bass. 

 In a different hearing of the passage, we can hear the boundaries between the 

phrases as revoicings of the harmony over a repeated fundamental bass—thus, both 

Chord 3 and Chord 4 can be heard as rooted on E-flat, while Chords 6 and 7 share a root 

of A. Note that this reading interprets the roots of these chords differently than the 

previous analysis—the divergent interpretations reflect two possible ways of hearing the 

structure of the passage, which is rich and complex enough to support a range of 

competing analyses.52  

                                                
52 The analysis offered here might seem to imply that Schoenberg’s music is “out of tune” and needs to be 
“corrected” to just intonation: this is not my intent, and Schoenberg makes his preference for equal 
temperament abundantly clear. Rather, I’d argue that equal temperament allows the careful balancing of 
ambiguities between several tone representations, an ambiguity that seems integral to the aesthetic of early 
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 By invoking tone representation, we are no longer treating this music as atonal, but 

rather as exhibiting a kind of extended tonality. As we’ve seen, the ratio model focuses 

our attention on very different aspects of pitch structure than those illuminated by 

distance-based models like pitch-class set analysis. I do not deny the utility of atonal 

theories like pitch-class set analysis for this repertoire, but they are designed to describe 

different kinds of relationships than those I’m interested in exploring here. In a sense, no 

music is truly atonal—there is music in which atonal relationships are the basis of 

convincing analytical interpretations, but this does not rule out the possibility of other 

tonal or quasi-tonal readings. If we do not insist on shoehorning musical works into the 

structures of just one theory at a time, the two methods could be usefully combined—

atonal theory’s emphasis on motivic transformation could be complemented by tone 

representation’s attention to vertical spacing, sonic color, and implied roots. 

 

 

 

                                                                                                                                            
atonality. A similar conclusion is drawn by Gary Don in his research on overtone series chords in the music 
of Debussy: he concludes that Debussy “was content to incorporate the overtone series into his music 
through the lens of equal temperament, thus suggesting a particular sonority, without requiring a literal 
(i.e., just intonation) realization of those sonorities.” See Don, “Brilliant Colors Provocatively Mixed: 
Overtone Structures in the Music of Debussy,” Music Theory Spectrum 23/1 (2001): 61-73. 
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CHAPTER 3: Extended Just Intonation in Theory and 
Practice 
 
Introduction: Precursors of extended just intonation 
 
 Of all the neglected chapters of music theory, just intonation seems at first glance 

the least likely to resurface in the century of serialism and chance composition. The 

essential principle of just intonation is that simple ratios between numbers produce the 

ideal, pure tunings for intervals in tonal music; with the standardization of equal 

temperament and the advent of atonality, just intonation seemed fated to obscurity and 

irrelevance. What use could composers have for an ancient tuning system, designed for 

simple tonal structures, that lacked the ease and flexibility of equal temperament? 

 For Harry Partch (1901-1974), the most influential figure in the just intonation 

revival in America, the appeal of this antiquated practice was thoroughly modern: the 

desire to build a rational musical world from strict rational principles, rather than simply 

accepting an established practice now alienated from its origins. For Partch, the music 

theory of a thriving culture would be built on a solid bedrock of “Archean granite” 

instead of on the inherited instruments, forms, and tunings of eighteenth-century Europe.1 

Just intonation reflected the natural preferences of the listening ear: on this solid 

foundation, he saw the possibility for an controlled, logical expansion of musical 

resources, eventually breaking free of the “prison bars” of the twelve-tone keyboard.2 

 By turning to just intonation as the basis for his theories, Partch placed himself in a 

tradition with a long history, which we can divide into three basic stages: Pythagorean, 
                                                
1 Harry Partch, Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, second 
edition (New York: Da Capo Press, 1974): xvii. 
 
2 Harry Partch, “Bitter Music,” in Bitter Music: Collected Journals, Essays, Introductions, and Librettos 
(Urbana, Illinois: University of Illinois Press, 1991): 12. 
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just, and extended just intonation. Pythagorean intonation refers to the tuning theory of 

the ancient Greeks, invented (as tradition has it) by Pythagoras in the sixth century B. C. 

and devoutly defended until the fifteenth century (and even beyond). The Greeks 

recognized that whole number ratios between string lengths on their monochords, based 

only on the multiples of 2 and 3, could define all of the intervals of their music. Simple 

ratios provided the foundational 2/1 (octave), 3/2 (fifth), and 4/3 (fourth). The simplicity 

of an interval’s ratio is directly related to its consonance: the less concordant intervals of 

Greek theory, like the 9/8 whole tone or the 256/243 limma, were formed by more 

complex ratios including higher multiples of 2 and 3. 

  Pythagorean intonation dominated European music theory until the Renaissance, 

when theory came into serious conflict with the practice of composers and performers. 

The problem was this: musicians had begun to treat thirds and sixths as consonances, but 

in Pythagorean tuning, these intervals are only available as complex, harsh-sounding 

ratios. The Pythagorean version of the major third, for example, is the thorny ratio 81/64, 

which is harmonically unstable and difficult to sing. The solution proposed by 

Bartolomeus Ramis de Pareia in 1482 was simple but had far-reaching effects: by 

admitting the number 5 and its multiples into the tuning system, the jarring ratio 81/64 

could be replaced by the smooth, mellow 5/4. The use of 5 also provided simple ratios for 

the minor third (6/5), minor sixth (8/5), and major sixth (5/3).  

  This tuning system, based on ratios containing multiples of 2, 3, and 5, is known as 

just intonation. Despite its admirable acoustic purity, just intonation leads to some 

practical difficulties, especially when implemented on keyboard instruments, which are 

incapable of making the fine continuous adjustments of a violin or trombone. It is 
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impossible to tune the twelve-note-per-octave keyboard of European tradition in just 

intonation in one key without creating drastically out-of-tune notes in other keys. To cope 

with this problem, various temperaments have been applied to the keyboard. The current 

standard is equal temperament—every step on the keyboard is made the same size, 

exactly one-twelfth of an octave. Instead of simple integer ratios, each interval except the 

octave is based on an irrational number, the twelfth root of 2. Compared to the ideal just 

intervals, each interval is slightly out-of-tune, but still usable. In the nineteenth and 

twentieth centuries, the harmonic flexibility of equal temperament outweighed the pure 

sound of just intonation, and equal temperament became the standard tuning for all 

keyboard instruments.  

 While Partch found the natural acoustical and physiological roots of just intonation 

a suitably “natural” foundation for his musical system, the intervallic palette of just 

intonation (established in the fifteenth and sixteenth centuries) was not sufficient for the 

complexities of his flowing, speech-like music. Partch found it necessary to go beyond 

the intervals based on 2, 3, and 5 to higher prime numbers including 7 and 11: this 

modification introduced extended just intonation. To describe the prime numbers 

included in a tuning system, Partch introduced the useful idea of “limits”—the limit of an 

intonational system is the highest prime number which is a factor in its interval ratios. 

Thus Pythagorean intonation has a “three-limit” and Renaissance just intonation a “five-

limit”: Partch’s own tuning system reached the eleven-limit. For Partch, the extension of 

just intonation to the higher prime numbers was part of a historical imperative: from 

earliest times, he writes, the use of musical materials has “progressed from the unison in 
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the direction of the great infinitude of dissonance.”3 The sense of historical destiny in 

Partch’s thought is shared by other extended just intonation advocates: James Tenney 

argued that due to the limitations of equal temperament, the development of harmony in 

Western music came to a halt in the early twentieth-century, and can only be restarted 

through the exploration of the intervallic possibilities of the higher primes.4 

 Earlier theories including these higher primes predate Partch’s work, though no 

previous thinkers explored this territory so systematically or ambitiously. The second-

century Greek theorist Ptolemy, one of Partch’s historical exemplars, proposed 

monochord divisions including intervals with prime factors as high as 11, though how 

accurately this reflected actual musical practice is unknown.5 The prime number 7 is 

proposed as the basis of the dominant seventh by eighteenth-century theorists Georg 

Andreas Sorge and Leonhard Euler, despite the intonational problems of fitting this 

seven-limit interval into the standard five-limit diatonic scale. The possibility of 

extending just intonation to multiples of seven is also considered in Helmholtz’s On the 

Sensations of Tone; this work is particularly important to the development of extended 

just intonation in the twentieth century, as his theories of acoustics and harmonic 

perception provide the underpinning for Partch’s theories.6 (American composer Ben 

                                                
3 Partch, Genesis of a Music, 94. 
 
4 James Tenney, “Reflections after Bridge,” liner notes to James Tenney: Bridge & Flocking. Hat Hut, 
ART CD 6193, 1996. 
 
5 See Partch, Genesis of a Music, 368-69. 
 
6 Hermann Helmholtz, On the Sensations of Tone, second edition (London, Longmans and Co., 1885). 
Translation by Alexander Ellis of Die Lehre von den Tonempfindungen, fourth edition. Helmholtz notes 
that the seventh of the dominant seventh chord “so nearly corresponds to the corresponding partial tone in 
the compound tone of the dominant, that the whole chord may be very well regarded as a representative of 
that compound.” He suggests that due to this, the dominant seventh is the “softest of all dissonant chords.” 
(347) The footnotes provided by Alexander Ellis, the English translator of On the Sensations of Tone, 
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Johnston also credits an early exposure to Helmholtz’s research as a spur toward his own 

work in extended just intonation.) 

 We can identify two main tendencies in the twentieth-century just intonation 

revival: one is the rejection of equal temperament and its tuning compromises for a purer, 

more authentic tuning system; the second is the exploitation of new, more complex 

harmonies based on the higher prime numbers of extended just intonation—that is, the 

intervals to be found between the upper overtones of the harmonic series. These two 

tendencies are not always present at the same time: for example, many composers of the 

early twentieth century showed eager interest in the new harmonies implied by the higher 

overtones, but were still unwilling to give up the advantages of equal temperament. 

Similarly, we find just-intonation composers happily working within the Renaissance 

five-limit for its clarity of intonation and purity of sound, and eschewing the complexities 

of the higher primes.  

 
Figure 3.1: Excerpt from Claude Debussy’s Canope, Preludes, Book II (1912-1913)
  
 The music of Claude Debussy provides many instances of equal-tempered 

harmonies which evoke the upper overtones: Figure 3.1 analyzes an excerpt from the 

prelude Canope (1912-13). Here, the whole-tone scale G A B D-flat E-flat F is arranged 

                                                                                                                                            
would presumably have interested Partch greatly: Ellis frequently refers to aural tests on the “Harmonical,” 
a retuned harmonium in just intonation including the natural seventh (17n). 
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to imply an overtone series on a G an octave below the actual bass (below the range of a 

standard piano): the sounding bass is the second partial of this low G, B the fifth, F the 

seventh, A the ninth, D-flat the eleventh, and E-flat the thirteenth—all approximated as 

closely as possible in equal temperament. Such overtone structures can also be found in 

music by Ravel, Scriabin, and even Webern and Berg, as demonstrated in recent research 

by Olli Väisälä and Gary Don.7  

 The relation of the overtone series to new harmonic developments in the early 

twentieth century became a staple of theoretical writing, as seen in writings by Arnold 

Schoenberg and Paul Hindemith. Schoenberg takes on Helmholtz’s characterization of 

the relation between consonances and dissonances as a continuum, not a sharp division 

into categories: “They are no more opposites than two and ten are opposites, as the 

frequency numbers indeed show; and the expressions “consonance” and “dissonance,” 

which signify an antithesis, are false.”8 Like Partch and Tenney, Schoenberg sees music 

evolving to gradually embrace the higher overtones: music “has drawn into the stock of 

artistic resources more and more of the harmonic possibilities inherent in the tone.”9 In 

his 1934 essay, “Problems of Harmony,” Schoenberg outlines how the chromatic scale 

might be understood as the combination of the upper overtones of the tonic, subdominant 

                                                
7 Olli Väisälä, “Prolongation of Harmonies Related to the Overtone Series in Early-Post-Tonal Music,” 
Journal of Music Theory 46/1-2 (2002): 207-283 and Gary Don, “Brilliant Colors Provocatively Mixed: 
Overtone Structures in the Music of Debussy,” Music Theory Spectrum 23/1 (2001): 61-73. See also 
Célestin Deliège, “L’harmonie atonale: de l’ensemble à l’echelle,” in Sources et ressources d’analyses 
musicales: journal d’une démarche (Sprimont: Mardaga, 2005): 387-411. 
 
8 Arnold Schoenberg, Theory of Harmony (Berkeley, California: University of California Press, 1978): 21. 
Translation by Roy Carter of Harmonielehre, third edition (Vienna: Universal Edition, 1922). 
 
9 Schoenberg, op. cit., 21. 
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and dominant: Figure 3.2 illustrates the overtones from 1 to 13 of the pitches C, F, and 

G.10 

1 2 3 4 5 6 7 8 9 10 11  12 13  
C C G C E G B-flat C D  E F-sharp G  A-flat 
F F C F A C E-flat F G  A B          C D-flat 
G G D G B D F G A  B C-sharp D E-flat 
Figure 3.2: Schoenberg’s derivation of the chromatic scale from the overtone series 
 
 The combination of overtones 1 to 6 of each fundamental build the pitches of the 

white-note diatonic scale: the five chromatic degrees are derived from overtones 7, 11, 

and 13 (sometimes with in multiple versions—C-sharp/D-flat can be the eleventh 

harmonic of G or the thirteenth of F, and E-flat can be either the seventh of F or the 

thirteenth of G). For these harmonic relationships to hold, one must accept a substantial 

degree of mistuning: the 11th harmonic is 49 cents below its tempered approximation as a 

tritone, and the 13th harmonic is 41 cents above the equal-temperament minor sixth.11 The 

overtone series, approximated to equal temperament, is also featured in Hindemith’s The 

Craft of Musical Composition.12 Hindemith ranked chords and intervals on a scale of 

varying tension, based on a study of each interval’s combination tones. Chords could then 

be assigned roots, based on the most consonant interval. Like Schoenberg, Hindemith 

suggests that chords in equal temperament can best be understood by an appeal to an 

underlying acoustic framework; this framework has much in common with the complex 

ratios of extended just intonation.  

                                                
10 Schoenberg, “Problems of Harmony,” in Style and Idea: Selected Writings of Arnold Schoenberg (New 
York: St. Martin’s Press, 1975): 271. 
 
11 Joseph Yasser challenges Schoenberg on these tuning problems in an exchange published as “A Letter 
from Arnold Schoenberg,” Journal of the American Musicological Society 6/1 (Spring 1953): 53-62. 
Yasser advocated a 19-tone division of the octave in his Theory of Evolving Tonality (New York: Da Capo 
Press, 1975). 
 
12 Paul Hindemith, The Craft of Musical Composition (New York, Associated Music Publishers, Inc., 
1941). Translation of Unterweisung in Tonsatz (Mainz: B. Schott’s Söhne, 1937). 
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 Henry Cowell’s 1930 New Musical Resources asserts the importance of upper 

overtones in the perception of harmony: like Schoenberg, he argues that the history of 

harmonic development has been a rise gradually upward to embrace the higher 

overtones.13 As in Schoenberg’s thought Cowell’s scale from consonance to dissonance is 

relative: the acceptance of a sonority as one or the other depends on the musical 

education and acculturation of the listener. Cowell suggests that chords in equal 

temperament can best be understood as approximations of extended just intonation 

combinations (21), in the spirit of the Debussy analysis in Figure 3.1 above. More 

complex harmonies may be the result of polychords, the mixture of pitches corresponding 

to overtones of two or more fundamentals.  

 Cowell also invokes the idea of undertones, which was central to the dualist 

theories of German nineteenth century theorists Arthur von Oettingen and Hugo 

Riemann. In Riemann’s theories, the undertone series is imagined as an exact inversion 

of the overtone series: thus, while the major triad is composed of the fourth, fifth, and 

sixth overtones, the minor triad is composed of the fourth, fifth, and sixth undertones, 

with the traditional fifth of the minor triad as the generator. While undertones are not 

actually created by vibrating bodies in the same way as overtones, we could imagine the 

undertone series as all the pitches which have the generator as their overtone. This 

distinction was explained by Oettingen: the pitches of the minor triad have (haben) a 

common overtone; the pitches of the major triad are (sein) overtones of a common 

fundamental.14 Theories invoking the undertone series are most successful when they 

                                                
13 Henry Cowell, New Musical Resources (New York: Knopf, 1930): 3. 
 
14 Arthur von Oettingen, Harmoniesystem in dualer Entwickelung (Dorpat and Leipzig: Gläser, 1866). 
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keep this distinction clear: the essential difference between overtones and undertones 

confounds attempts to use them in exact symmetry with one another. 

 The explication of just intonation in New Musical Resources is marred by a general 

vagueness in pitch measurements: pitches tend to be rounded off to the nearest equal-

temperament note. This liberal rounding off means that for Cowell there is little 

difference between the natural seventh-based 8/7 “major second” and the 10/9 and 9/8 

major seconds. Cowell never converts ratios into cents, which might have suggested a 

greater precision and a clearer recognition of the differences between just and tempered 

intervals. The rhythmic innovations in New Musical Resources are far more thoroughly 

worked out than the analogous pitch systems (and play a greater role in Cowell’s own 

compositions): Cowell explores divisions of the basic bar or beat into each of the odd 

numbers 1 to 15, suggesting a metaphorical relationship to the overtone series: this 

prefigures experiments with tempo by composers ranging from Stockhausen to 

Nancarrow. Cowell also introduces unusual meters like 6/9 and 2/6, and suggests that 

ratios between rhythmic values can be understood as analogous to vibration ratios in just 

intervals.15 

 

Harry Partch  
 
 While Debussy, Schoenberg, Hindemith, and Cowell all speak of drawing 

expanded harmonic resources from the unexplored portions of the overtone series, these 

composers never cut their ties to the established twelve-tone system. This step fell to 

Harry Partch, whose music and theoretical treatise Genesis of a Music (1949/1974) are 
                                                
15 See Kyle Gann, “Subversive Prophet: Henry Cowell as Theorist and Critic,” in the Whole World of 
Music: A Henry Cowell Symposium, ed. David Nicholls (Amsterdam: Harwood Academic Publishers, 
1997): 176. 
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the departure points for extended just intonation in the twentieth century. Partch’s book is 

unique in its development of a new musical language—including harmony, notation, and 

even instruments—from just a few basic principles. 

 Beginning in the 1920s, Partch created new instruments to play the extended just 

intervals unavailable in the traditional orchestra. His first constructions were an adapted 

viola, with an elongated fingerboard marked with positions for extended just intervals, 

and a retuned reed organ, which he named the “Ptolemy” (later to be rechristened the 

“Chromelodeon” in a rebuilt version). Part of the pleasure of reading Genesis of a Music 

(apart from Partch’s opinionated and vigorous writing style) are the illustrations and 

names of his instruments, including the Cloud Chamber Bowls, the Spoils of War, the 

Bloboy, and the Eucal Blossom. 

 Partch’s Genesis of Music is organized around two concepts. One is 

Corporealism—“the essentially vocal and verbal music of the individual” (8); Partch 

opposes Corporeal music, linked to poetry and dance, to the abstraction of Western 

instrumental art music. Partch’s second guiding concept is Monophony: “an organization 

of musical materials based upon the faculty of the human ear to perceive all intervals and 

to deduce all principles of musical relationship as an expansion from unity” (71). In the 

Monophonic organization of pitch, Partch is always conscious of a single pitch—or to be 

more accurate, pitch class—representing “unity”; in more traditional musical terms, we 

would term this a tonic, though Partch prefers to designate it by the ratio 1/1. Thus far, 

we’ve discussed ratios as representing intervals, not pitch classes. The ratio 9/8, for 

example, specifies the interval of the major whole tone (about 204 cents) between two 

pitches, but not precisely what those pitches are. In Partch’s Monophonic pitch world, 
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ratios represent a pitch’s relationship to the central pitch 1/1. Thus, 9/8 means the pitch a 

whole tone above 1/1, 4/3 represents the pitch a fourth above, and 3/2 the pitch a perfect 

fifth above. In theory, the inverse of these ratios would refer to pitches the same distance 

below 1/1: thus 8/9 would be a whole tone below 1/1, 3/4 a fourth below, and 2/3 a fifth 

below. For a simplified set of pitch class names, though, Partch prefers to transpose these 

pitches by octave into the octave from 1/1 to 2/1: instead of 8/9, a tone below 1/1, he 

typically uses 16/9, a minor seventh above 1/1; instead of 3/4 (a fourth below), he uses 

3/2, and instead of 2/3, 4/3. Monophony and Corporealism were once found together, 

Partch suggests, in ancient Greece where “ratio-idea and music-enhanced word vitality” 

were present in the same musical culture (60). The restoration and reunion of these 

concepts in the modern world are the goal of Partch’s theorizing and composition. 

  In Genesis of a Music, Partch describes a 43-tone scale chosen from intervals 

within the 11-limit within a single octave (from 1/1 to 2/1).16 Figure 3.3 shows the 

diagram of this scale that Partch nicknamed the “One-Footed Bride”. The diagram is to 

be read beginning with the ratio 1/1 at the lower left; pitch ascends up the left column of 

ratios from 1/1 to the tritone exactly half an octave above (not expressible as an integer 

ratio). The note names from G to C# mark this ascent. We must read the right side of the 

diagram from the top down—this reversal puts each interval directly opposite its inverse, 

with which it shares a similarity in sound and relative consonance. The fourth 4/3 is 

opposite the fifth 3/2, the major third 5/4 opposite the minor sixth 8/5, and so on.  

                                                
16 Partch, Genesis of a Music, 133. As Partch scholar Bob Gilmore has documented, Partch experimented 
with scales of different sizes throughout his career, all selected from the boundless Monophonic “fabric” of 
intervals: see “Changing the Metaphor: Ratio Models of Musical Pitch in the Work of Harry Partch, Ben 
Johnston, and James Tenney.” Perspectives of New Music 33/1-2 (Winter-Summer 1995), 458-503. 
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Figure 3.3: “The One-Footed Bride: A Graph of Comparative Consonance”17 
 
  Note that while all the pitches in the scale are related by just intervals to 1/1, not all 

are expressible as overtones of 1/1. For example, the minor third of the scale, 6/5, would 

only fit into the overtone series of a fundamental a just major third below 1/1; similarly, 

the fourth 4/3 would require a fundamental a fifth below 1/1. When pitches can be found 

in the overtone series of 1/1, they are called “Identities”—thus 3/2 is an example of the 3-

Identity, and 5/4 is the 5-Identity. Most of the intervals are “primary ratios” built from the 

integers 1 to 11; dotted lines point out “secondary ratios” built from multiples of these 

primary integers including 15, 21, 27, 33, and 81. 

                                                
17 Partch, Genesis of a Music, 155. 
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  Partch draws a curve alongside the columns of intervals to show each one’s relative 

consonance; this curve gives the “bride” her distinctive profile. A point on the curve far 

from the central column represents a high degree of consonance (peaking at the octave, 

the bride’s “foot”); a point on the curve close to the central column indicates a more 

dissonant interval; for example, the intervals smaller than a semitone at the bottom of the 

column or the complex 27/20 near the top. 

 The One-Footed Bride also categorizes the pitches into four types based on the 

interval they form with 1/1: intervals of approach (the 231 cent 8/7 septimal whole tone 

or smaller), intervals of emotion from the small 7/6 minor third (267 cents) to the flat 

fourth 21/16 (471 cents), intervals of power (the perfect fourth and fifth), and intervals of 

suspense (diminished fifths/augmented fourths).  
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Figure 3.4: “The Expanded Tonality Diamond”18  
 
  The melodic scale diagrammed in the “One-Footed Bride” takes on a harmonic 

dimension in Partch’s Tonality Diamond (Figure 3.4). The tonality diamond is a matrix 

of overlapping “Otonalities” (six note sets based on the odd overtones 1 through 11) and 

their inversions, “Utonalities” (based on the odd undertones 1 through 11). Figure 3.5 

shows how the members of each Otonality/Utonality fall in ascending/descending order 

within an octave (cent values show the pitch class relative to 1/1 = 0): 

                                                
18 Partch, Genesis of a Music, 159. 
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Otonality: 1/1 9/8 5/4 11/8 3/2 7/4 
       cents: 0 204 386 551 702 969 
 
Utonality: 1/1 16/9 8/5 16/11 4/3 8/7 
       cents: 0 996 814 649 498 231 
Figure 3.5: Pitch content of Otonalities and Utonalities 
 
  The Tonality Diamond lays out the twelve harmonic areas—six Otonalities and six 

Utonalities—which include 1/1 in as a member. 1/1 is alternately given 12 meanings, as 

different Odentities of Otonalities and Utonalities. In the Tonality Diamond, Otonalities 

are read from lower left to top right (within the solid lines), and Utonalities are read from 

lower right to top left (within the dotted lines). Thus, the Otonality on 8/7 starts at the 

leftmost corner, and continues to 7/7 (equal to 1/1) at the top of the diamond; the 

Utonality on 7/4 reads from the rightmost corner to the top of the diamond in the opposite 

direction. Up the center of the diagram runs a series of ratios, all equivalent to 1/1: 

pitches to the left of this spine are in a lower octave (or 2/1, in Partch’s preferred 

terminology) and pitches to the left are in the higher octave above 1/1. The resemblance 

of this diamond to the matrices of prime and inverted forms in serial music is notable, 

though not specifically acknowledged by Partch. Every pitch in the matrix is at the 

intersection between a Utonality and Otonality, allowing facile shifts between the two 

tonal types. Partch sees the unifying relation of all twelve harmonies to 1/1 as one of the 

great strengths of Monophony, even though this unity comes at the cost of free 

modulation as in equal temperament.  

  To complete the 43-tone scale of Figure 3.3, Partch adds 14 new pitches to the 29 

distinct pitches of the tonality diamond, so that steps between adjacent scale degrees vary 

from between 14.4 and 38.9 cents. The inclusion of these added intervals makes possible 

a number of “secondary tonalities,” which fall outside the Diamond because they do not 
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include 1/1. Many of these secondary tonalities are deemed incomplete because they call 

for intervals falling outside the 43-tone scale; but nonetheless, they offer some expanded 

tonal resources beyond the twelve tonalities of the diamond. 

 While Partch is extremely specific about the layout of his tuning system, he has less 

to say about the specific application of these concepts in composition. Numerous 

historical scales, including the just diatonic and Pythagorean scales, are possible in 

various tonalities. Partch discusses how the members (Identities) of a particular Otonality 

or Utonality act as the six “primary planets” of that tonality; these draw nearby pitches 

toward themselves with a kind of gravitational pull, with the 1-identity, like a tonal root, 

exerting the greatest attractional force. Another harmonic device described by Partch is 

“tonality flux”—the interplay between nearby pitches in different tonalities. Partch offers 

an example juxtaposing the 4, 5, and 6 identities of the 8/7 Otonality (231, 617, and 933 

cents) and the 6, 5, and 4 identities of the 7/4 Utonality (267, 583, and 969 cents)—the 

pitches of the second set are all within 40 cents of a pitch in the first. 

 

Lou Harrison 
 
 Lou Harrison (1917-2003) was one of the composers most strongly influenced by 

Partch’s Genesis of a Music. Harrison had studied with Henry Cowell in San Francisco 

and collaborated with John Cage on a number of projects in the 1930s, including several 

concerts of percussion music—he also studied briefly with Schoenberg in Los Angeles. 

Harrison was given a copy of Genesis of a Music in 1949 by the composer and music 

critic Virgil Thomson, and soon began to incorporate just intervals into his own 

compositions. 
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 Unlike Partch, who wished to wipe away musical systems of the past to make a 

fresh start, Harrison has always been open to musical hybridization: he writes, “Don’t 

underrate hybrid musics because that’s all there is.”19 Harrison’s music borrows ideas 

from Western diatonic music as well as Asian musics from Korea to Indonesia; all of 

these borrowings, however, are inflected by his dictum that “Just intonation is the best 

intonation.”20  

 In addition to many modes and pentatonic scales within the five-limit, Harrison has 

explored tunings which extend into the higher primes of extended just intonation. One 

such example is the piano retuning for Incidental Music for Corneille’s Cinna, a suite 

composed between 1955 and 1957 for retuned “tack piano”—a piano with tacks inserted 

in the hammers for a harpsichord-like jangle. Harrison’s tuning system is shown in Figure 

3.6, with both ratios and values in cents. The tuning shows clear affinities to Partch’s 43-

tone scale, which includes all of Harrison’s pitches except the 25/18 “augmented fourth.” 

The tuning includes a variety of pure fifths and thirds, as well as septimal relationships 

combining B-flat (7/6) and F (7/4) with the other pitches of the scale. The harmonic 

writing in Cinna takes advantage of the ringing pure fifths of the tuning, combining them 

with the less familiar septimal intervals in a way reminiscent of some passages in La 

Monte Young’s Well-Tuned Piano. 

G A-flat A B-flat B C C-sharp D E-flat E F F-sharp G 
1/1  16/15 10/9 7/6 5/4 4/3 25/18   3/2 8/5 5/3 7/4 15/8   2/1 
0  112 182 267 386 498 569   702 814 884 969 1088  1200  
Figure 3.6: Piano retuning in Cinna21 
 

                                                
19 Lou Harrison, Lou Harrison’s Music Primer (New York: C.F. Peters, 1971): 45. 
 
20 Ibid., 4. 
 
21See Leta Miller, ed., Lou Harrison: Selected Keyboard and Chamber Music 1937-1994 (Madison, 
Wisconsin: A-R Editions, 1998): xl-xlv. 



Chapter 3: Extended Just Intonation in Theory and Practice 

—171—  

 Harrison also developed a complex variant of extended just intonation he called 

“free style,” as opposed to the “strict style” of composing with reference to a fixed scale 

and tonal center. In free style, melodic intervals between notes are chosen freely from a 

palette of just intervals: the resultant interval chains can take the intonation into distant 

territories very quickly.22 Figure 3.7 is a brief excerpt from the Simfony in Free Style. 

Note that the B that begins the excerpt (assigned the cent value 1100) is not the same 

pitch as the B beginning the subsequent phrase in the lower system, which is 49 cents 

(nearly a quartertone) higher. Because of the enormous difficulty of making successive 

just intervals implying constantly shifting tonal centers, the work has never been received 

a live performance.23 

 
Figure 3.7: Simfony in Free Style, excerpt24  
 
 The music of the Indonesian gamelan has long fascinated Harrison, who has been a 

leading figure in the development of the “American Gamelan” movement. Harrison has 

constructed a number of gamelan, all based on his own theories of extended just 

intonation. The combination of gamelan with just intonation theory creates a strange 

                                                
22 Larry Polansky, “Item: Lou Harrison as a Speculative Theorist,” in Peter Garland, ed., A Lou Harrison 
Reader (Santa Fe, New Mexico: Soundings Press, 1987). 
 
23 Other free style works include At the Tomb of Charles Ives and Phrase for Arion’s Leap. See Leta Miller 
and Fredric Lieberman, Lou Harrison: Composing a World (New York: Oxford University Press, 1998): 
116-121. 
 
24 Harrison, Lou Harrison’s Music Primer, 6-7. 
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cross-cultural hybrid: just intonation has never been part of the theory behind Indonesian 

tunings, which are based instead on a concept of embat, a highly individual sense of 

intonation linked to the singing voice.25 Because gamelan tunings are not traditionally 

fixed, many of their pitches fall close to just intervals which can be the basis for a tuning 

system: as Harrison’s biographers Miller and Lieberman note, this imposition of just 

intonation on the gamelan “while not culturally characteristic, was culturally possible.”26 

Figure 3.8 illustrates a sléndro tuning from the gamelan Harrison built at Mills College.  

                     octave 
      |___________________________| 
         perfect fourth        perfect fourth  
      |__________|    |___________| 
intervals between pitches:    8/7     7/6     9/8     8/7    7/6 
cents:     0 231 498 702 933 1200    
Figure 3.8: Harrison’s tuning for the Mills gamelan27  
 
  Drawing on gamelan ideas in his music for Western instruments, Harrison often 

borrows terms for different scale types: sléndro for anhemitonic pentatonic scales and 

pélog for hemitonic pentatonics. In Harrison’s characterization, sléndro scales have wide 

seconds and narrow thirds, while pélog scales have wide thirds and narrow seconds.28 

Essential to all of Harrison’s music is the idea of scale or mode: the wide currency of 

related concepts has made his cross-cultural borrowings compatible with one another, 

often to a surprising degree. With the exception of the diabolically complex “free style” 

                                                
25 The conflict between embat and Western “intonational naturalism” is explored by Marc Perlman in 
“American Gamelan in the Garden of Eden: Intonation in a Cross-Cultural Encounter,” The Musical 
Quarterly 78/3 (Autumn 1994): 510-555. 
 
26 Leta Miller and Fredric Lieberman, “Lou Harrison and the American Gamelan,” American Music 17/2 
(Summer 1999): 146-178. 
 
27 Miller and Lieberman, Composing a World, 113. 
 
28 Ibid., 110. According to Perlman, pélog contains “seven tones that are treated less as a single scale than 
as a source of pentatonic scales” (op. cit., 535). 
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works, Harrison’s use of just intonation is far less dense that Partch’s: as the musicologist 

Bob Gilmore has pointed out, Harrison seems to use just intonation more for the uniquely 

limpid and transparent sound of its intervals than to add more pitches to his palette.29  

 

Ben Johnston  
 
  Ben Johnston’s association with Partch came not only through Genesis of a Music, 

but in the course of a six-month apprenticeship with Partch in 1950 and 1951. Johnston 

(b. 1926) and his wife lived in Partch’s primitive studio in Gualala, California, tuning 

Partch’s instruments and learning to play them.30 It was, however, not until the end of the 

decade that Johnston began to write his own compositions in just intonation. While 

Partch sought to build his system from scratch, Johnston attempted to reconcile extended 

just intonation with the Western tradition—he composed for standard Western 

instruments, and was even comfortable using serial procedures in combination with just 

intervals. In his compositions, Johnston calls for precise tuning of complex just intervals, 

using a detailed system of new accidentals. Among the extended just intonation 

composers, Johnston is one of the most articulate theorists: his thoughts on just intonation 

appeared in a series of influential academic articles.31  

 At the root of Johnston’s theorizing is the argument that just intervals are more 

intelligible than tempered ones: thus just intonation is a relatively more efficient way of 

                                                
29 Bob Gilmore, “The Climate Since Harry Partch,” Contemporary Music Review 22/1-2 (March/June 
2003): 21.  
 
30 Heidi von Gunden, The Music of Ben Johnston (Metuchen, New Jersey: Scarecrow Press, 1986): 11-13. 
 
31 See especially “Scalar Order as a Compositional Resource,” Perspectives of New Music 2/2 (1964), 56-
76 and “Rational Structure in Music,” American Society of University Composers Proceedings 11/12 
(1976-77), 102-108. These and other theoretical writings are reprinted in “Maximum Clarity” and Other 
Writings on Music (Urbana, Illinois: University of Illinois Press, 2006) a volume of Johnston’s collected 
writings edited by Bob Gilmore. Page numbers below refer to the versions in “Maximum Clarity.” 
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conveying a complex musical relationships than tempered tuning. In particular, the 

hierarchical implications of just intonation lend a cognitive transparency lacking in 

symmetrical divisions of the octave like equal temperament: 

Interval scale thinking emphasizes symmetry of design. The harmonic and 
tonal meaning of symmetrical pitch structures is ambiguity. Chordally they 
produce either a sense of multiple root possibilities or of no satisfactory 
root possibility. Tonally they cause either a sense of several possible 
tonics or of no adequate tonic. 
Ratio-scale thinking, on the contrary, emphasizes a hierarchical 
subordination of details to the whole or to common reference points. The 
harmonic and tonal meaning of proportional pitch structures is clarity and 
a sense of direction.32 

 
In the remainder of the article, Johnston derives a 53-tone scale based on five-limit just 

intonation, combined with a systematic use of accidentals which is the basis for his later 

notational practice (discussed in more detail below). This scale (with its careful 

accounting for syntonic commas using plus or minus signs before accidentals) was used 

compositionally in Johnston’s String Quartet No. 2 (1964).33 

 Beginning with the solo trombone piece One Man (1967), Johnston began to extend 

his pitch language beyond 5-limit just intonation to embrace higher primes. One Man 

combined the septimal ratios of extended just intonation with the five-limit scales of his 

earlier work. The new resources of the seven-limit were explored in more detail in 

Johnston’s String Quartet No. 4 (1973). This quartet, a variation form based on the 

American spiritual “Amazing Grace,” progresses from Pythagorean intonation through 

                                                
32 Johnston, “Scalar Order as a Compositional Resource,” 28. 
 
33 Von Gunden’s monograph on Johnston’s music includes a detailed analysis of this work (76-85). One of 
the most notable features is the structure of the first movement: each measure represents a step upward in 
Johnston’s 53-tone scale. The cycle closes in the 54th measure, with a return to the original pitch level. 
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five-limit just intonation to septimal extended just intonation, as if recapitulating the 

history of tuning culminating with Johnston’s system.34  

 These new musical resources were accompanied by a new theoretical tool, the 

harmonic lattice. Johnston credits this innovation to his acquaintance with writings by the 

Dutch theorist Adriaan Fokker (who advocated a 31-tone equal temperament to closely 

approximate just intonation including septimal intervals).35 Lattices arrange pitches along 

axes corresponding to each of the prime numbers of a just intonational system; the 

number of axes could, in theory, be expanded indefinitely. Figure 3.9 reproduces 

Johnston’s 3, 5, 7 lattice from his 1976 article “Rational Structure in Music.”     

                                                
34 See Randall Shinn, “Ben Johnston’s Fourth String Quartet.” Perspectives of New Music 15/2 
(Spring/Summer 1977), 145-73. 
 
35 Gilmore, Introduction to Maximum Clarity, xviii. For an introduction to Fokker’s theories see A. D. 
Fokker, “Equal temperament and the thirty-one-keyed organ,” Scientific Monthly 81 (1955): 161-166. 
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Figure 3.9: Johnston’s 3, 5, 7 lattice36  
 
 The lattice appears in two different notations in this figure: the version on the left 

shows the note names of each pitch, while the version on the right shows the associated 

ratios. Like Partch, Johnston identifies each pitch by its relation to a central “tonic,” 1/1. 

The left-right axis shows ascending just major thirds and the vertical axis ascending 

perfect fifths; Johnston’s lattice adds a third dimension for natural sevenths (the ratio 

7/4). The advantage of the lattice in conceptualizing and displaying intervals is that it 

concisely expresses our intuitions about distances in harmonic space: simply related 

pitches are near one another, while more complex ones are separated by a longer path 

through the nodes of the lattice. Johnston explains how scales in extended just intonation 

systems can be derived from a lattice: each scale begins with the “basic chord” of the 

                                                
36 Johnston, “Rational Structure in Music,” 72. 
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system, comprised of 1/1 plus the nearest pitch on each axis, either in the “overtone” 

direction for a “major” system or the “undertone” direction for “minor.” (This closely 

parallels Partch’s Otonalities and Utonalities, and reflects Johnston’s persistent interest in 

harmonic dualism and invertibility.) The scale of a given system expands on this “basic 

chord,” subdividing each of its intervals (starting with the largest) by the addition of a 

new pitch that is adjacent in the lattice to the pitches already chosen.37 A few additional 

rules ensure the compactness and regularity of scales based on any extended just 

intonation lattice. Writing in favor of lattices and ratio scales, Johnston again cites their 

comprehensibility: scales derived from ratios are “an effective aid in designing melodic 

and harmonic audible structure even with unfamiliar pitch materials.”38  

 The note names in Figure 3.9 use some unfamiliar symbols from Johnston’s 

microtonal notation system. Unlike Partch, who abandoned Western notation in favor of 

interval ratios treated as note names, Johnston works within the traditional system, but 

supplements it with new accidental symbols. His first step is to precisely define the 

tuning of each pitch on the staff when uninflected by an accidental. This white note scale 

is tuned to allow pure triads on F, G, and C, as in Figure 3.10. 

C D E F G A B 
1/1 9/8 5/4 4/3 3/2 5/3 15/8 
Figure 3.10: Johnston’s tuning of the “white-note collection”  
 
 This traditional tuning for the just major scale includes two different sized whole 

tones (9/8 between C and D and 10/9 between D and E), two different minor thirds (6/5 

between E and G and 32/27 between D and F), and both perfect and out-of-tune fifths 

                                                
37 This process is closely related to James Tenney’s theory of “crystal growth” in  harmonic space, which is 
based on minimizing distances in harmonic space; this theory is discussed in detail in the section below on 
Tenney. 
 
38 Johnston, “Rational Structure in Music,” 68. 
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(3/2 between C and G, 40/27 between D and A). The difference between each of these 

pairs of intervals is the syntonic comma, 81/80. Johnston uses the symbols + and – to 

indicate alterations of one syntonic comma: one multiplies by 81/80 to raise the pitch and 

by 80/81 to lower the pitch. Thus, the 9/8 ratio from C to D becomes a 10/9 ratio from C+ 

to D, and the out-of-tune fifth D-A can be made perfect by lowering D to D-. The 

adjustment by syntonic comma can be combined with other microtonal accidentals to 

describe any pitch on Johnston’s lattices: Figure 3.11 lists Johnston’s accidentals through 

the thirteen-limit.39 

symbols ratio  cents  primary usage   
+ – × 81/80 ± 22 cents raises 10/9 to 9/8, 32/27 to 6/5, 40/27 to 3/2 
  × 25/24 ± 71 cents raises 6/5 to 5/4 
* + × 36/35 ± 49 cents lowers 9/5 to 7/4 
↑ ↓ × 33/32  ± 53 cents raises 4/3 to 11/8  
. / × 65/64 ± 27 cents raises 8/5 to 13/8  
Figure 3.11: Johnston’s accidentals, through the thirteen-limit 
 
 Normal chromatic adjustments are indicated by flats and sharps, expressly defined 

as multiplication or division by 25/24—the difference between the major third 5/4 and 

the minor third 6/5. For example, to lower B to B-flat, one multiplies the ratio of B, 15/8, 

by 24/25 with the result 9/5. For ratios in extended just intonation, Johnston uses 

accidentals which inflect pitches from within the five-limit. The “7” symbol can be 

combined with B-flat to lower the pitch from 9/5 to 7/4, the equivalent of multiplying by 

35/36. To preserve the symmetry of the system, Johnston uses an inverted 7 to show a 

rise in pitch by the same interval. The arrows raise/lower the pitch by 53 cents, or 33/32: 

this is the difference between 4/3 (F) and the eleventh partial of C (11/4). The 13 and 

                                                
39 This figure is based on the table in Johnston’s 2003 “A Notation System for Extended Just Intonation,” in 
Maximum Clarity, 87. See also John Fonville’s “Ben Johnston’s Extended Just Intonation: A Guide for 
Interpreters,” Perspectives of New Music 29/2 (1991): 106-137. 
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inverted 13 symbols work on the minor sixth—A-flat (8/5) is raised to 13/8 through 

multiplication by 65/64. Johnston uses the primes above 13 much less often, usually only 

in passages that treat the upper reaches of the overtone series as a sort of chromatic scale. 

In some sections of his String Quartet No. 9, the primes of 17, 19, 23, 29, and 31 appear 

in this context. 

 
Figure 3.12: Opening of String Quartet No. 9, IV 
 
 Figure 3.12 diagrams the pitches of the opening two phrases of Johnston’s String 

Quartet No. 9 (1987). The first phrase is based (with the exception of the final E-flat) on 

pitch classes drawn from the overtone series of C: this is recognizable from the presence 

of a power of 2 in each denominator. The second phrase is a precise inversion of the first, 

around the axis E/E-flat. As a result, the passage is built on “undertones” of G instead of 

overtones of C. The treatment of pitch material in these two phrases illustrates Johnston’s 

long-standing fascination with invertibility and harmonic dualism. 
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Ezra Sims 
 
  The music of Ezra Sims (b. 1928) lies on the border between extended just 

intonation and the equal divisions of the octave proposed by microtonalists like Alois 

Hába and Julian Carrillo. Sims notates his work in a system dividing each semitone into 

six equal parts of 16 2/3 cents each; this results in a total of 72 pitches per octave.40 His 

notation system is shown in Figure 3.13. The close spacing of pitches in 72-tone equal 

temperament makes it possible to closely approach all pitches within 8 1/3 cents; most of 

the partials from 1 to 33 can be approximated much more closely (see Figure 3.14). 

 
Figure 3.13: Sims’s microtonal notation41 

   

                                                
40 As discussed later in this essay, 72-tone equal temperament has also been used by Georg Friedrich Haas 
and European composers; in the United States, saxophonist Joseph Maneri has used the 72-tone scale in 
both compositions and improvisations. 
 
41 Ezra Sims, “Yet Another 72-Noter,” Computer Music Journal 12/4 (1988): 28. 
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     nearest 72-tone 
partial  cents  approximation error  
33   53  50   –3      
31   1145  1150   +5 
29   1030  1033   +3 
27   906  900   –6 
25   773  767   –6 
23   628  633   +5 
21   471  467   –4 
19   298  300   +2 
17   105  100   –5 
15   1088  1083   –5 
13   841  833   –8 
11   551  550   –1 
9   204  200   –4 
7   969  967   –2 
5   386  383   –3 
3   702  700   –2 
1   0  0   0 
Figure 3.14: approximations of partials 1 to 31 in 72-tone equal temperament 
 
  Though Sims notates his music in equal temperament, he expects that it will be 

heard as a close approximation of extended just intonation; ideally, players will also 

adjust pitches slightly to improve the fit with just intervals, much as they would when 

playing tonal music.42 As does Johnston, Sims describes the mind’s preference for just 

ratios in terms of a minimization of computational effort: “The mind will try to 

understand what it perceives according to its inbuilt biases—the preferences for verticals 

and horizontals, harmonic ratios, perhaps the Golden Section, and so on, that are 

apparently hardwired into it. If it can’t, and is too long frustrated in the attempt, it’s very 

likely to just say The Hell With It and go off and play with something else.”43 The mind’s 

“hardwired” cognitive preference for rational intervals allows Sims’s extended equal 

temperament to be heard as extended just intonation. 

                                                
42 Ibid., 31. 
 
43 Ezra Sims, “Long Enough to Reach the Ground or How Long Should a Man’s Legs Be?” Perspectives of 
New Music 32/1 (Winter 1994): 208-213: 211. 
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  In his music, Sims uses an eighteen-note scale which can be transposed to various 

pitch levels within the 72-tone-per-octave tuning, much as the seven-note diatonic scale 

can appear at any transposition within the tempered twelve-tone chromatic scale. The 

equal temperament makes it possible to modulate from key to key without leaving the 72-

note pitch world; modulation is even possible to such distant areas as the 11/8 augmented 

fourth or 13/8 “semimajor sixth.”44 Sims describes his scale (see Figure 3.15, which gives 

a just tuning for each pitch in relation to 1/1) as “an expanded diatonic”: gaps in the 

standard diatonic scale are subdivided so that intervals between adjacent pitches range 

from quarter tones to third tones.  

 
Figure 3.15: Sims’s basic scale in the key of D45 
 
  For Sims, the scale and key relationships precede any particular harmonic 

technique: within the framework of his scale, Sims has used a variety of harmonic 

devices. One approach Sims describes is treating the scale degrees corresponding to the 

eighth to fifteenth partials as points of relative stability, which can be combined in 

various types of stable chords: “triadic, quartal, secundal, depending on the requirements 

of the piece.”46 Sims notes that pitches arranged to reflect difference and summation tone 

phenomena seem to reinforce one another particularly well: for instance, in the 

proportion 6:16:22, where 6 is the difference of 22 and 16, 16 is the difference of 22 and 
                                                
44 Sims, “Yet Another 72-Noter,” 31. 
 
45 Sims, “Reflections on This and That (Perhaps a Polemic).” Perspectives of New Music 29/1 (Winter 
1991), 236-257: 241. 
 
46 Sims, “Yet Another 72-Noter,” 39. 
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6, and 22 is the sum of 6 and 16. He speculates that such formations might “represent a 

sort of ‘lowest energy state’ requiring less effort of larynx and mind than would any 

collection of nearby but inharmonic pitches.”47 The combination of an interval with its 

sum and difference tones is closely related to the electronic techniques of ring and 

frequency modulation; applying these concepts to instrumental writing was common in 

the early works of the “spectralist” composers Grisey and Murail (and later Claude 

Vivier). Austrian microtonalist Franz Richter Herf frequently used arithmetic series (e.g. 

1, 4, 7, 10...) with similar results.48 

  Sims argues that extended just intonation can also be found in jazz and blues 

music: he cites examples in specific performances by Odetta and Louis Armstrong. For 

Sims, these performances have essential microtonal components that are lost if the tune is 

transcribed into standard notation. In a transcription of Armstrong’s “St. James 

Infirmary,” Sims notes two different minor thirds, one a third tone smaller than the 

tempered minor third (7/6) and one a third tone larger (perhaps, Sims suggests, a 16/13 

interval below 3/2: 39/32). In addition, Sims points out a melodic emphasis on two 

slightly different augmented fourths, approximating the ratios 11/8 and 23/16.49 Sims 

uses this transcription as a source of melodic material in his Sextet (1983).  

                                                
47 Ibid., 40-41. Murail describes the use of combination tones in his 13 Couleurs du Soleil Couchant in 
“Target Practice,” Contemporary Music Review 24/2-3 (2005): 165-166. Translation of “Questions de 
cible,” Revue Entretemps 8 (1989). 
 
48 Horst-Peter Hesse, “Breaking into a New World of Sound: Reflections on the Ekmelic Music of the 
Austrian Composer Franz Richter Herf,” Perspectives of New Music 29/1 (1991): 212-235. Horatiu 
Radulescu describes his own use of sum and difference tones in Bob Gilmore, “‘Wild Ocean’: An 
Interview with Horatiu Radulescu,” Contemporary Music Review 22/1-2 (2003): 105-122. See also the 
discussion of Hans Zender’s theories below. 
 
49 “Yet Another 72-Noter,” 33-34. 
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 Like Harrison and Johnston, Sims’s aesthetic is closely tied to the musical textures 

and theoretical procedures of the classical tradition. Music by all three composers has 

recognizable scales, melodies, and counterpoint; the use of extended just intonation is 

considered an expansion, rather than a renunciation of the principles of traditional 

tonality. In their theoretical work, they build new musical languages by analogy to the 

languages of the past, although with a far richer range of intervallic and harmonic 

possibilities. A more radical branch of extended just intonation—influenced by Indian 

music, John Cage, and the avant-garde movements of the 1960s—can be seen in the work 

of La Monte Young and James Tenney.  

 

La Monte Young 
 
  La Monte Young (b. 1935) found his way to extended just intonation independently 

of the research of Partch and his followers. For Young, the gateway to just intonation was 

his experience with Indian music, particularly as a disciple of the Indian vocalist Pandit 

Pran Nath. Young links the precise intonation of Indian ragas to the ratios of extended 

just intonation. The 3/7-lattice-based pitch organization of his six-hour improvised 

keyboard work, The Well-Tuned Piano, is discussed in detail in Chapter 1. 

  Other works include just ratios with higher prime limits. The Melodic Version 

(1984) of The Second Dream of The High-Tension Line Stepdown Transformer from The 

Four Dreams of China is a seventy-seven minute work for eight trumpets based on only 

four pitches, in the proportion 12:16:17:18; the sound is based on Young’s childhood 

memories of the hum of electrical equipment near his Idaho home. The extraordinary 

length of these pieces is taken still further in his sine-wave installations—such as the 
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extravagantly titled The Base 9:7:4 Symmetry in Prime Time When Centered Above and 

Below the Lowest Term Primes in the Range of 288 to 224 with the Addition of 279 and 

261 in Which the Half of The Symmetric Division Mapped Above and Including 288 

Consists of the Powers of 2 Multiplied by the Primes Within the Ranges of 144 to 128, 72 

to 64, and 36 to 32 Which Are Symmetrical to Those Primes in Lowest Terms in the Half 

of the Symmetric Division Mapped Below and Including 224 within the Ranges 126 to 

112, 63 to 56, and 31.5 to 28 with the Addition of 119—which sustain pure tones in 

complex just ratios for days at a time.50  

 Young is best known as one of the founders, along with Terry Riley, of musical 

minimalism, a term which seems problematic when applied to complex large-scale works 

like The Well-Tuned Piano. The description is more apt for Young’s static, drone-based 

works, though these are still far removed from the repetitive minimalism of Philip Glass 

or Steve Reich (both members of a movement that can be traced back to Riley’s In C). 

Like Young, Riley was a student of Pandit Pran Nath (the two also studied composition at 

the same time together at the University of California in Berkeley). Riley has also worked 

in just intonation—his works include pieces for retuned organs and pianos—Shri Camel 

(1980) and Harp of New Albion (1986) both use a five-limit just intonation.51 Riley is less 

                                                
50 Kyle Gann, “The Tingle of p × mn -1” in Music Downtown: Writings from the Village Voice (Berkeley: 
University of California Press, 2006): 269-271. See also Gann, “The Outer Edge of Consonance: Snapshots 
from the Evolution of La Monte Young’s Tuning Installations” in Sound and Light: La Monte Young and 
Marion Zazeela, Bucknell Review XL/1 (Lewisburg: Bucknell University Press, 1996). 
 
51 See Kevin Holm-Hudson, “Just Intonation and Indian Aesthetic in Terry Riley’s The Harp of New 
Albion,” http://www.ex-tempore.org/Volx1/hudson/hudson.htm, on the 5-limit just intonation tuning of 
Riley’s 1984 piano cycle. 
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interested than Young in the new intervals of extended just intonation, and when retuning 

of instruments is impractical, Riley often plays on equal-tempered instruments.52 

 

James Tenney 
 
  James Tenney (1934-2006) combined a strong grounding in physics and 

mathematics with an adventurous compositional spirit. Early in his career (in the mid-

1960s), he worked on pioneering computer music projects at Bell Labs, while at the same 

time participating in New York’s experimental and avant-garde art scene. With his 

interest in a broad range of disciplines, Tenney was able to bring a greater engagement 

with acoustics and psychoacoustics to bear on his theorizing than many of his 

compositional colleagues. The scientific side of Tenney’s thought is clearest in the 

pragmatism of his musical theorizing—Tenney approaches the numerological 

abstractions of extended just intonation with a skeptical eye, always aware of how 

musical structures are actually perceived. 

  Perhaps the most far-reaching of Tenney’s contributions to just intonation theory is 

the idea of tolerance. This is implicit in the work of other composers (Ezra Sims’s 

tempered just intonation, for example) but Tenney provides a more thoroughly 

considered treatment of the subject. For Tenney, tolerance is “the idea that there is a 

certain finite region around a point on the pitch height axis within which some slight 

mistuning is possible without altering the harmonic identity of an interval.”53 A just 

                                                
52 See Riley’s interview with Frank Oteri on the website New Music Box, “Terry Riley: Obsessed and 
Passionate About All Music,” http://www.newmusicbox.org/article.nmbx?id=1288. 
 
53 James Tenney, “The Several Dimensions of Pitch.” In The Ratio Book: A Documentation of the Ratio 
Symposium, Royal Conservatory, The Hague, 14-16 December 1992, ed. Clarence Barlow (Cologne: 
Feedback Studio Verlag. 102-115): 109. 
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interval with its particular harmonic quality can tolerate a degree of mistuning before that 

quality is lost. The degree of tolerance is variable, depending on many contextual factors, 

but in general varies “inversely with the ratio complexity of the interval.” Simple 

intervals like octaves and fifths would retain their identity under greater mistuning than 

complex intervals like 9/8 or 17/16. A result of tolerance is that there is a practical limit 

on the complexity of a just intonation system; very complex ratios are likely to be heard 

as out-of-tune variants of simpler ratios. With the addition of tolerance, the abstractions 

of just intonation become applicable to a wide range of pitch phenomena—just intonation 

plus tolerance can explain tempered and inharmonic sonorities as well as those based on 

pure harmonic structures. 

  Tenney’s idea of harmonic simplicity is formalized in a notion of harmonic 

space.54 As in Ben Johnston’s harmonic lattices, Tenney’s harmonic space consists of a 

number of discrete points joined by axes representing prime integers. The number of axes 

can be theoretically infinite, but Tenney’s concept of tolerance constrains this 

proliferation because complex intervals built of high prime factors tend to be heard as 

mistuned simple ratios. One of Tenney’s innovations is the addition of a weighted metric 

for harmonic distance: see pages 125-128 for a detailed discussion of Tenney’s formula 

for calculating harmonic distance. 

  These distance measurements allow Tenney to be very specific about how pitch 

sets are perceived harmonically: we understand the set as the closest possible 

arrangement in harmonic space. In his article “On ‘Crystal Growth’ in Harmonic Space,” 

                                                                                                                                            
 
54 James Tenney, “John Cage and the Theory of Harmony.” In Soundings 13: The Music of James Tenney. 
Santa Fe, New Mexico: Soundings Press, 1984. 55–83.  Also in Musicworks 27 (1984), 13–17. Reprinted in 
Writings about John Cage. Ed. Richard Kostelanetz. Ann Arbor, Michigan: University of Michigan Press, 
1993. 136–61. 
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Tenney explores how pitch sets might develop through the addition of pitches one by 

one, always adding the point in pitch space that minimizes the sum of harmonic distances 

between all pitches in the set. This approach gradually builds pitch-space crystals 

growing from Pythagorean sets based only on 2 and 3 to five-limit just intonation sets 

and eventually extended just intonation structures like the crystal in Figure 3.16.55   

 
Figure 3.16: A “harmonic crystal” in 3,5,7-space 
 
 Throughout his compositional career, Tenney has realized just intonation in a 

number of different ways: unlike the “purist” system-building composers Partch and 

Johnston, Tenney is willing to employ different methods of pitch organization, even 

including temperament. One of these methods is 72-tone equal temperament (as in the 

work of Ezra Sims). In Changes: 64 Studies for Six Harps (1985), this temperament is 

realized by the retuning of six harps, each to a different pitch level; the staggered equal-
                                                
55 “Ausweitung in eine neue Dimension: ‘Kristallwachstum’ im harmonischen Tonraum (1993-1998).” 
MusikTexte 112 (February 2007): 75-79.  English version, “On ‘Crystal Growth’ in Harmonic Space (1993-
1998)” in Contemporary Music Review 27/1 (2008): 47-56. 
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tempered chromatic scales of the harps combine to produce 72 equal steps. Tenney has 

also used up or down arrows (or combinations of arrows) to indicate the division of the 

semitone into six parts (or even seven parts as in Glissade (1982), for a more precisely 

approximated fifth partial. In early works like Clang (1972), down arrows were used to 

(imprecisely) show the lowering of the 7th and 11th partials. Tenney’s preferred notation 

for recent works has been “cents deviation”: this shows the deviation of the desired pitch 

from the nearest tempered note in cents. Although he recognizes that this degree of 

precision may be impossible to attain, Tenney feels this notation best conveys his desired 

pitch relationships: “it’s a small target, but it’s still a target, right?”56 This compromise 

with tempered tuning would have been anathema to a just intonation purist like Partch, 

but it offers greater accessibility for performers accustomed to tempered pitch notation. 

 

Other American Just Intonation Composers 
 
  While the figures discussed above may be the best known American composers 

working in extended just intonation, many other composers have engaged aspects of just 

intonation theory through their compositions. 

  Like James Tenney, Alvin Lucier (b. 1931) often bases his compositions on 

acoustic phenomena. Though Lucier does not explicitly use just intonation in his works, 

they address many of the same psychoacoustical phenomena that are essential to just 

intonation theory—from beats between closely spaced tones to the spectral structure of 

individual instrumental tones. One of his best known pieces, I Am Sitting in a Room, 

makes audible the resonant frequencies of its performance space. The performer records a 

                                                
56 James Tenney and Donnacha Dennehy, “Interview with James Tenney,” Contemporary Music Review 
27/1 (2008), 79-90: 80. 
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brief text (“I am sitting in a room, different from the one you are in now...”), which 

explains the concept of the piece in detail. The recording is then played in the same room, 

where it is recorded and then replayed: this process of recording and playback is repeated 

over and over again. As the process is repeated, certain frequencies of the recording are 

amplified by the room’s natural acoustical resonances, while others are cancelled out. In 

the final cycles, only haunting whistles remain: “We discover that each room has its own 

sets of resonant frequencies in the same way that musical sounds have overtones.”57 

Many of Lucier’s works combine acoustic instruments with electronically generated sine 

tones: in Music for Piano with Slow Sweep Pure Wave Oscillators (1992), Lucier sets the 

piano’s sounds against sine waves which change slowly in pitch. As the sine waves cross 

the instrumental sounds, they set off complex patterns of interference and beating: the 

sine waves set the spectral structure of the piano tones into relief, making hidden acoustic 

phenomena audible. 

  Pauline Oliveros (b. 1932) occupies an important place among composers 

exploring just intonation as part of a spiritual, meditative practice. Her music—often 

presented in verbal scores as “Sonic Meditations”—combines breathing and meditation 

exercises with improvisation (Oliveros performs on a justly-tuned accordion). Through 

these meditation, Oliveros pursues an intensely aware state of musicality she calls “deep 

listening.”58 

 A new generation of just intonation composers has emerged, including students of 

Ben Johnston (Kyle Gann) and James Tenney (Larry Polansky and John Luther Adams). 

                                                
57 Alvin Lucier, “Careful listening is more important than making sounds happen,” in Reflections: 
Interviews, Scores, Writings (Cologne: MusikTexte, 1995), 434. 
 
58 Heidi Von Gunden. The Music of Pauline Oliveros (Metuchen, New Jersey: Scarecrow Press, 1983). 
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Just intonation has informed works in a variety of styles, ranging from Ellen Fullman’s 

delicate works for her “Long String Instrument” (with justly tuned strings from thirteen 

to thirty meters long) to Glenn Branca‘s high-volume “symphonies” for multiple electric 

guitars (with other instruments including electronic keyboards and drums) tuned to 

pitches of the harmonic series.59 The intricacies of tuning theory have been pursued by a 

number of theorists, often working outside the mainstream academic establishment: these 

theorists include John Chalmers, Ervin Wilson, and Ivor Darreg, as well as the members 

of an active online discussion group.60 

 

Extended Just Intonation in European Composition 
 
 Extended just intonation has been a largely American phenomenon, due largely to 

the lasting influence of Partch and Johnston. In the 1950s and 60s, just tuning seemed to 

particularly thrive in the Midwest and West, areas less closely associated with European 

musical thought than the urban centers of the East Coast, where serialism prevailed in the 

increasingly academic world of new music. While microtonality was certainly not new in 

European new music, European composers tended to explore expanded equal 

temperaments rather than extended just intonation—see for example the music of Alois 

Hába or Ivan Wyschnegradsky. Although the subdivision of the octave into twenty-four 

or more equal parts can be used to approximate extended just intervals, in most cases 

composers using such divisions have been more interested in exploring their 

mathematical and combinatorial properties, using the finer division of the octave to 

                                                
59 Ellen Fullman, “The Long String Instrument,” Musicworks 85 (Spring 2003): 20-28. Glenn Branca’s 
interview with William Duckworth appears in Talking Music (New York: Schirmer, 1995). 
 
60 http://groups.yahoo.com/group/tuning, accessed April 15, 2008. 
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support new patterns and scales.61 Ideas from extended just intonation occasionally 

emerge in the work of composers using expanded equal temperament—for example, 

Wyschnegradsky describes the interval of five and a half semitones as related to the 11/8 

ratio. But in general, such ratio considerations are subservient to an overriding model 

based on the abstract geometries of pitch distance.62  

 Karlheinz Stockhausen’s Stimmung (1968) was one of the most influential works to 

adopt the intervals from the harmonic series associated with extended just intonation. The 

entire work for six vocalists is based on a single overtone series, built on a low B-flat and 

including the seventh and ninth partials. The singers’ vowel sounds are carefully 

combined to emphasize different combinations of formants—the result is closely related 

to the Tuvan and Tibetan practices of overtone singing. The work is steeped (like the 

music of La Monte Young) in Eastern mysticism: in addition to the collaborative, 

ceremonial treatment of the vocal ensemble, the text of the work consists of the “magic 

names” from a variety of cultures around the world and short texts written by 

Stockhausen. 

 Among composers of Stockhausen’s influential generation, György Ligeti has been 

most interested in exploring the world of extended just intonation, though he uses this 

                                                
61 In his article “Mikrotonalitäten,” Georg Friedrich Haas suggests that there are four distinct approaches to 
microtonal pitch organization: “1) tempered divisions of the octave into equal parts other than twelve; 2) 
tuning systems based on the proportions of the overtone series (just intonation); 3) ‘tone-splitting’ 
(Klangspaltung), that is, the use of very small intervals close to the unison: the focus of compositional 
interest is the beating and interference between the tones; and 4) aleatoric microtonality through particular 
instrumental techniques, whose pitch is not precisely specified: for example, prepared piano, some 
percussion instrument sounds, the ad-libitum detuning of strings, etc.” Georg Friedrich Haas, 
“Mikrotonalitäten,” in Musik der anderen Tradition: Mikrotonale Tonwelten (Munich: Musik-Konzepte, 
Edition Text+Kritik, 2003), 59-65. 
  
62 A possible counterexample are the composers writing in 31-tone equal temperament associated with 
Adriaan Fokker in the Netherlands; we have already seen the influence of Fokker’s theories on Ben 
Johnston’s multidimensional tone lattices. The 31-tone division of the octave allows close approximations 
of seven-limit just intervals. Perhaps because of the difficulties of realizing this music without specially 
constructed keyboard instruments, the tuning has not found widespread acceptance beyond a small circle. 
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material with a personal stamp. Ligeti’s works have used a variety of means to create a 

kind of “hybrid microtonality,” combining different kinds of pitch theorizing including 

just intonation, temperament, and uncertain or wavering tuning. These include retunings 

of parts of the ensemble (as in Ramifications and the Violin Concerto), microtonal 

inflections (the Double Concerto), the use of high harmonics on strings and brass (the 

Cello Concerto and Hamburgisches Konzert), and even historical temperaments 

(Passacaglia ungherese). Ligeti has referred to some of the pitch adjustments in the 

Double Concerto as “Partch effects”; another link to the American extended just 

intonation composers is the influence of Ligeti’s pupil Manfred Stahnke, who studied 

with Ben Johnston in Illinois. Like Ligeti, Stahnke often combines aspects of just 

intonation with other intonational systems for an intentionally impure hybrid, as in his 

1987 Partch Harp for retuned harp and synthesizer.63 

 The questions addressed by composers working in extended just intonation have 

also fascinated composers of the spectral movement. Tristan Murail and Gérard Grisey 

are the best known of this group, and widely regarded as the movement’s founders, but 

spectralism has influenced many other composers including Kaija Saariaho, Magnus 

Lindberg, and Jonathan Harvey.64 The differences between spectralism and just 

intonation are subtle but significant. While just intonation composers tend to base their 

theories around pure tunings and frequency ratios, spectral composers ground their work 

in the analysis of actual sonorities—often including inharmonic or otherwise distorted 

                                                
63 Bob Gilmore, “The Climate Since Harry Partch,” 29-30. Stahnke describes how just intervals are used in 
several of his works in “Mein Weg zu Mikrotönen,” in Musik der anderen Tradition: Mikrotonale 
Tonwelten (Munich: Musik-Konzepte, Edition Text+Kritik, 2003), 125-140. 
 
64 One could argue that Olivier Messiaen anticipated many of the concerns of the spectralists; see Julian 
Anderson’s “A Provisional History of Spectral Music,” Contemporary Music Review 19/2 (2000): 7-23. 
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spectra. Thus, it is not uncommon to see spectral composers using pitch sets based on the 

stretched spectra of piano strings—sometimes this natural stretching is even exaggerated 

for a stronger effect. The just intonation composers tend to refer to the pure harmonic 

spectrum as a kind of Platonic ideal for harmonic relationships—those who are more 

scientifically inclined locate the organizing power of the ideal overtone series in the 

mechanisms of aural perception. Spectral composers, on the other hand, locate the 

“natural” in the acoustical structure of actual sounds: they are thus much more aware of 

distortions from ideal harmonicity together with the actual amplitude of each spectral 

component and its temporal evolution. This aspect of spectral thought has been 

encouraged in recent years by the availability of computer applications for sound 

analysis. Spectralists and extended just intonation composers tend to call for very 

different degrees of intonational precision: while extended just intonation calls for 

precisely defined pitches (or at most, no more than about 8 cents of error, as in Ezra 

Sims’s 72-tone temperament), spectralism tends to approximate pitch information to a 

quartertone or eighth-tone grid. Perhaps most importantly, spectralism carries a different 

aesthetic history—one far closer to European serialist and post-serialist music. The 

different aesthetics are clear if one compares the traditionalist textures of Harrison or 

Johnson with spectral music—the Indian-based music of Young or Tenney’s minimalist 

structures are also distant from spectralism’s more active and dramatic musical 

discourse.65 

  Tempered forms of extended just intonation (in the manner of Ezra Sims) have 

been explored independently by a number of European composers. The Austrian 

                                                
65 Among spectral composers, Horatiu Radulescu’s largely static and precisely tuned works (for example, 
Inner Time II (1993) for 7 clarinets) show the greatest similarity to the music of Young and Tenney. See 
Gilmore, “‘Wild Ocean’: An Interview with Horatiu Radulescu.”  



Chapter 3: Extended Just Intonation in Theory and Practice 

—195—  

composer Franz Richter Herf (1920-1989) designed his own system of microtonal 

notation dividing the octave into 72 equal parts; his system was inspired by the 

microtones of Croatian folk music and the theories and music of Alois Hába. Herf was 

particularly interested in collections of pitches whose partial numbers form an arithmetic 

series: that is, a series in the form a, a+b, a+2b, a+3b, etc. A combination of such series 

provide the pitch organization for his Ekmelischer Gesang (1975) for solo violin.66 Georg 

Friedrich Haas (b. 1953) has also adopted 72-tone equal temperament: his works in this 

tuning system include the seventy-five-minute orchestral work in vain (2000), which 

combines overtone-based harmonies with twelve-tone equal temperament tritones, 

fourths, and fifths. His First String Quartet (1991) retunes each string of the quartet to 

allow complex overtone-based combinations of natural harmonics, much in the manner of 

La Monte Young’s Chronos Kristalla (1990).67 Hans Zender has also turned to 72-tone 

equal temperament in several works, drawn by its combination of close approximations 

of the upper partials and a capacity for lightning-quick modulations and harmonic 

multivalence. Zender is particularly interested in the harmonic effects of sum and 

difference tones (as created by the electronic technique of ring modulation—see 

Stockhausen’s Mantra among many other works). Among the complex structures he 

derives by this procedure is the elegant Fibonacci-series harmony formed by the pitches 

approximating overtones 1, 2, 3, 5, 8, 13, 21, 34, 55, etc., where each new upper pitch is 

                                                
66 Horst Peter Hesse, Grundlagen der Harmonik in mikrotonaler Musik. (Innsbruck: Edition Helbling, 
1989) and “Breaking into a New World of Sound,” Perspectives of New Music 29/1 (Winter 1991): 212-
235. 
 
67 Haas, op. cit., 64-65. 
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the sum of the harmonic numbers of the two pitches below. In such a series, the intervals 

between adjacent pitches gradually converge on the same size, about 833 cents.68 

* * * 

 The many facets of extended just intonation discussed here underscore the powerful 

appeal of this approach to composers of the mid- to late-twentieth century. By engaging 

the emerging scientific discipline of psychoacoustics, extended just intonation has 

become a promising, scientifically supported theory, not just an archaic remnant of a 

tonal past. As Harry Partch declared, “It need hardly be labored that music is a physical 

art, and that a periodic groping into the physical, a reaching for an understanding of the 

physical, is the only basic procedure, the only way a music era will attain any 

significance.”69 In its promise of a consistent system built on acoustic facts, just 

intonation is able to fulfill many of the desiderata of a modernist music theory; in 

particular, an independence from the languages of the past (as represented by equal 

temperament) and the possibility for limitless expansion into the outer reaches of the 

overtone series. Since the early experiments of Harry Partch, extended just intonation has 

developed from a fringe phenomenon to a more central position in the discourse around 

pitch structure in new music. 

 Historically, the emergence of just intonation must be viewed in part as a reaction 

to other musical developments. James Tenney has described the appeal of extended just 

intonation as a way of expanding beyond the “exhausted harmonic resources” of the 

                                                
68 Hans Zender, “Gegenstrebige Harmonik” in Musik der anderen Tradition: Mikrotonale Tonwelten 
(Munich: Musik-Konzepte, Edition Text+Kritik, 2003), 167-208. Also in Die Sinne Denken: Texte zur 
Musik 1975-2003, ed. Jörn Peter Hiekel (Wiesbaden: Breitkopf & Härtel, 2004). Péter Eötvös also explored 
the Fibonacci series intervals in his Intervalles-Intérieurs (1974): see his liner notes to Intervalles-
Intérieurs, Windsequenzen, Budapest Music Center Records, BMC CD 092, 2003.  
 
69 Harry Partch, “Show Horses in the Concert Ring,” in Bitter Music, 174-180. 
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standard twelve-tone collection. Extended just intonation allowed the construction of 

complex harmonies and musical surfaces without abandoning tonality—it suggests an 

expanded tonality rather than atonality. For other composers, just intonation was a 

liberation from the abstractions of serial music. Like spectral music, music in extended 

just intonation could abandon the motivic and geometric play of serial structure in favor 

of simple, transparent forms—forms built explicitly to engage the mechanisms of our 

aural perception.  

 Extended just intonation represents a turn away from structural listening—listening 

syntactically to the development of themes, motives, and architectonic forms—and 

toward a meditative, in-the-moment mode of listening. The appeal of just harmonies over 

tempered harmonies is that the just harmonies are defined in their own terms, not 

designed as part of a system of syntactic relationships. That is, our appreciation of just 

harmonies focuses on their nature, not their place in a system of relationships. As 

Stockhausen said of Stimmung: “Time is suspended. One listens to the interior of the 

sound, to the interior of the harmonic spectrum, to the interior of a vowel: TO THE 

INTERIOR”70 This turn from music based on narrative forms combining many sounds to 

the contemplation of a single sound (with, of course, its own complex internal overtone 

structure) appears in many guises: Pauline Oliveros’s “deep listening,” Lucier and 

Young’s sound installations, Tenney’s meditative koans and swells, and the “one note” 

orchestra works of Giacinto Scelsi. The psychedelic aesthetic of the 1960s and the 

simultaneous explosion of interest in Eastern spirituality were important influences on the 

spread of “deep listening,” as were John Cage’s exhortations to explore the nature of the 

                                                
70 Karlheinz Stockhausen, liner notes to Stimmung: Pariser Version, Stockhausen Edition, CD 12, 1993: 
72. 
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sounds that surround us. As long as composers continue to be inspired by the physical 

and sensual properties of musical tones and their combinations, extended just intonation 

will play an important role in compositional theory.  
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CHAPTER 4: Gérard Grisey and the “Nature” of Harmony 
 
Introduction: Spectral music and the idea of the “natural”  
 
 Gérard Grisey (1946–1998) was a founding member of the spectralist movement—

a group of French composers born in the 1940s whose best-known members are Grisey, 

Tristan Murail, Michaël Levinas, and Hugues Dufourt. Spectralism emerged in the 1970s, 

in part as a reaction against the abstraction of serial music. Instead of basing their music 

on the manipulation of rows or motives, spectral composers take inspiration from the 

physical properties of sound itself. Each composer’s interpretation of what “spectral 

music” might mean is slightly different, but as a generalization we could say that its 

essential characteristic is the dissection of sounds into collections of partials or overtones 

as a major compositional and conceptual device. Spectral composers use the acoustical 

fingerprints of sounds—their spectra—as basic musical material. 

 In their writings, spectral composers often emphasize the natural origins of this 

material. In this chapter I explore how Grisey’s music invokes the idea of nature, and 

what this idea might mean for listeners and analysts. I will suggest that the word “nature” 

can have two contrasting interpretations in Grisey’s music—one based on the objective, 

physical nature of external reality, the other on the subjective, internal nature of aural 

perception—and that these two interpretations of “nature” lead to very different ways of 

thinking about and analyzing his works. 

 As discussed in Chapter 1, one of the most characteristic procedures of spectral 

composition is “instrumental synthesis”: this technique mimics the electronic music 

technique of additive synthesis, but replaces pure sine tones with the complex sounds of 

real instruments. To review the technique, we return to the iconic example from the 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—200—   

beginning of Grisey’s Partiels for chamber orchestra (1975), already discussed briefly in 

Chapter 1. The opening of the work is based on a fortissimo trombone E2. The trombone 

sound can be analyzed into a set of partials of varying frequencies and amplitudes—this 

can be expressed as a numerical table, or graphically as a spectrogram: see Figure 4.1.1 

The composer then scores these partials for an instrumental ensemble. Figure 4.2 

summarizes the opening page of the score—we first hear the trombone (accompanied by 

sforzandi in the double bass)—as the trombone fades out, instruments from the ensemble 

gradually enter, playing pitches which match the analyzed partials of the trombone sound. 

This process is repeated several times. Grisey’s goal is not a precise reproduction of the 

trombone sound—which would be impossible with the complex spectra of acoustic 

instruments—but rather a hybrid sonority in which we can hear both the individual 

instruments and their fusion into a unified timbre. 

 

                                                
1 Figures 4.1 and 4.2 reproduce Figures 1.25 and 1.26 from Chapter One. 
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Figure 4.1: Spectral analysis of a trombone sound 
 
 

 
Figure 4.2: Instrumental synthesis of a trombone sound in Grisey’s Partiels (1975) 
 
 The physicality of sound is brought into focus by these techniques of analysis and 

resynthesis—this is an appeal to nature in the external, objective sense. For music 

theorists, Grisey’s technique will have strong echoes of Rameau’s corps sonore—the 

essential difference, though, is that Grisey is dealing with real sounds, not an idealized 

source of overtones. Recall that Rameau’s corps sonore, as formulated in the Génération 

Harmonique, conveniently stopped vibrating after the sixth partial to avoid the “out-of-
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tune” natural seventh.2 In contrast, Grisey carries the complexities of real sounds into his 

music, including their often distorted and imperfect spectra. 

 Some of the most common musical sounds have inharmonic spectra. A piano 

string, for example, produces a stretched spectrum: only an idealized string with no mass 

or stiffness would produce a pure harmonic spectrum. This means that the first overtone, 

at the octave, is not exactly twice the frequency of the fundamental, but rather slightly 

higher. The stretching continues into the higher partials—we might not realize it (though 

our piano tuners do), but by the fourth octave the partials of a low piano note are almost a 

third of a tone (65 cents) above their equivalents in a pure harmonic series. Other spectra 

are compressed, like those of certain brass instruments: each partial is lower than its 

harmonic counterpart.  

 Grisey acknowledges these real-world departures from ideal harmonicity in the 

design of his 1996 chamber ensemble piece Vortex Temporum. His compositional 

procedures are extensively documented in sketch-study monographs by Hervé and 

Baillet, and sketches in the Paul Sacher Stiftung confirm their findings.3 In Figure 4.3, I 

retrace some of Grisey’s techniques to illustrate how he brings inharmonic spectra into 

his music. His conceptual point of departure is a naturally stretched sound—in this 

example, I illustrate this with the piano’s lowest B-flat. The first staff of Figure 4.3 shows 

a pure harmonic spectrum on B-flat; the second shows the pitches of the partials of a real 

piano B-flat, computed by Fourier analysis. Each partial is indicated by the nearest equal-

                                                
2 See Thomas Christensen, Rameau and Musical Thought in the Enlightenment (Cambridge: Cambridge 
University Press, 1993): 133-168. 
 
3 See Jean-Luc Hervé, Dans le vertige de la durée: Vortex Temporum de Gérard Grisey (Paris: L'Itinéraire, 
2001) and Jérôme Baillet, Gérard Grisey: Fondements d’une écriture (Paris: L’Harmattan, 2000). 
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temperament pitch, with the deviation from equal temperament supplied in cents beneath 

each note. 
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Figure 4.3: Four spectra. Deviations from equal temperament indicated in cents 
under each note. 
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 Grisey is not content with the relatively tame degree of stretching of the piano note, 

and exaggerates it until each octave is expanded by a quartertone—see the third staff in 

Figure 4.3.4 While the sixteenth partial of the piano tone is 65 cents sharp, in Grisey’s 

spectrum it is 221 cents sharp—more than a whole tone above the equivalent harmonic 

partial. Grisey’s distorted spectrum is based on a property of natural sounds—the 

stretching found in piano spectra—but exaggerates that property to an unnatural degree. 

Why does Grisey exaggerate the stretching so drastically? In part, it may be to make the 

spectrum’s inharmonicity apparent even when the partials are rounded off to a 

quartertone grid—with a smaller degree of stretching, the approximation to quartertones 

would erase the difference between stretched and harmonic spectra. Also, the 

exaggerated distortion produces a sonic result reminiscent of the broken octaves 

characteristic of much serial music—despite spectralism’s professed antipathy to 

serialism, the characteristic sound of serial music continued to exert a strong influence on 

spectral composers. Most importantly, though, I think we must consider Manfred 

Stahnke’s assertion that Grisey is primarily interested in thresholds and borderline cases: 

in this case, the perceptual threshold where, as the degree of stretching increases, a 

spectrum is no longer heard as a fused timbre but instead as a collection of independent 

pitches.5 

 In Vortex Temporum, the spectrum is removed yet further from its natural model by 

“filtering” (his term for the omission of certain partials) and transposition down by an 
                                                
4 Grisey also chooses a different curve to describe the spectral distortion. The equation for the frequency of 
partials of a piano string is fn = nf0(1+Bn2)½, where n is the partial number, f0 is the fundamental frequency, 
and B is a constant defined by the physical properties of the string. Grisey opts for the simpler equation: fn 
= f0n1.046. See Jérôme Baillet, op. cit., 217 and Harvey Fletcher, E. Donnell Blackham, and Richard 
Stratton, “Quality of Piano Tones,” Journal of the Acoustical Society of America 34/6 (June 1962), 756. 
 
5 See Manfred Stahnke, “Die Schwelle des Hörens: ‘Liminales’ Denken in Vortex Temporum von Gerard 
Grisey” Österreichische Musikzeitschrift 54/6 (June 1999): 21-30. 
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octave. Figure 4.4 shows the three types of spectra (compressed, harmonic, and stretched) 

used in Vortex Temporum.   
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Figure 4.4: three spectrum types used in Vortex Temporum 
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 This is how “objective nature” enters Grisey’s music: as the reproduction through 

instrumental synthesis of the acoustical spectra of real-world sounds, with their 

characteristic distortions kept intact and even emphasized. Straightforward as this 

evocation of nature might seem in an early work like Partiels, when we listen to later 

works like Vortex Temporum it’s often impossible to hear Grisey’s harmonies as versions 

of the natural spectra from which they were derived. After the harmonies have been 

subjected to extensive compositional manipulation—exaggerated stretching or 

compression, approximation to a quartertone grid, and the omission of many partials, 

often including the fundamental—their natural acoustical source is no longer 

recognizable.6 What, then, does talking about Grisey’s compositional techniques really 

tell us about how we hear his music? When the “natural” derivation of his material 

collapses, and we hear the distorted spectra as complex chords rather than fused timbres, 

the appeal to nature in the objective, external sense fails, and the workings of our internal 

nature—the nature of our auditory perception—become more relevant to our musical 

understanding. 

* * * 

 Instead of analyzing the music by reconstructing Grisey’s derivation of the 

harmonies, we can use the theory of tone representation to approach the music beginning 

from our own harmonic intuitions.7 This is a turn from one sense of the “natural” to the 

                                                
6 Significantly, the organizational power of harmonicity is lost when we change from using harmonic to 
inharmonic spectra. One of the unique qualities of harmonic sounds is that they are easily resolved into 
objects when presented at the same time.  But, as Bregman notes (op. cit., 238) “when two stretched series 
of partials are sounded at the same time, you do not hear only two distinct sounds as you do when listening 
to two harmonic sounds.” 
 
7 Manfred Stahnke takes a similar approach in his analysis of chords from the first part of Vortex 
Temporum. See Stahnke, “Zwei Blumen der reinen Stimmung im 20. Jahrhundert: Harry Partch und Gérard 
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other: from an external idea of the natural, based on how Grisey’s harmonies draw on 

natural models, to an internal idea of the natural, based on how we intuitively—that is, 

naturally—make sense of complex sonorities. We can describe Grisey’s harmonies 

without reference to their source, but rather starting with our own aural experience. 

 Composer Roger Reynolds has questioned the relation between spectral models and 

their musical realization:  

An interesting but problematic aspect of some contemporary French 
thinking about musical practice is the reference to avowedly scientific 
sources for modeling the acoustic behaviors of sounds and thereby 
establishing a rationale for redefining, for example, the relation between 
timbre and harmony. An instance of the difficulty that one encounters in 
considering their perspectives can be directly stated: an examination of the 
spectral profile of a particular sound over time does, indeed, allow one to 
identify the components of its idiosyncratic perceptual impact upon the 
ear. It is, however, clearly absurd to hold that a “by hand” representation 
(approximation) of such spectral structures on the basis not of sinusoidal 
partials, but rather by means of instrumental tones (each of which has its 
own, nonconforming, nonintegral spectrum), could possibly result in an 
orchestrated product that bears anything other than an incoherent and 
metaphoric relationship to the supposed model. The fact that this rationale 
is not, in fact, rational, may not necessarily invalidate its artistic effects, of 
course; but, if one does not hold the analogy to have validity, the appeal is 
arbitrary.8  

 
Reynolds is at pains to emphasize that his characterization of the relationship between 

spectral structures and their acoustical models as “incoherent and metaphoric” is not an 

aesthetic judgment so much as a theoretical one. Reynolds’s observations raise an 

                                                                                                                                            
Grisey.” Hamburger Jahrbuch für Musikwissenschaft 17 (2000): 369-389 and “Die Schwelle des Hörens” 
(op. cit.). Manfred Stahnke characterizes Grisey not as a “spectral” composer, but instead a “liminal” 
composer, interested in experimenting with the edges of our “shape-finding” abilities. As Albert Bregman 
notes, inharmonic spectra can often induce ambiguous or weak pitch perceptions; playing with this 
ambiguity is essential to Grisey’s aesthetic. In support of this view, Stahnke points out how Grisey uses 
his three spectral types as pools for characteristic material rather than attempts to recreate specific acoustic 
sonorities. Even the “just” spectrum is tempered, and  often uses different pitch classes for 7th and 14th 
partials—see Stahnke, “Die Schwelle des Horens,” 22. 
 
8 Roger Reynolds, “Seeking Centers,” Perspectives of New Music 32/2 (1993): 282-83. This critique is 
similar in tone to criticisms of serialism as perceptually opaque: see Fred Lerdahl’s “Cognitive 
Constraints,” op. cit. 
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important question: if the models underlying the music are not in a clear, unambiguous 

relationship to the musical surface, then does an analysis based on a reconstruction of 

compositional procedure tell us anything about how the music is heard and understood? 

If the model is not clearly reflected in the musical surface, an analysis from the 

perceptual standpoint is likely to tell us more about the work. Tone representation is a 

useful tool for modeling our perceptual intuitions about harmony in spectral works when 

the underlying acoustic models cannot satisfactorily explain how harmonies are heard.9 

By applying tone representation, we can approach these works through the analytical lens 

of extended just intonation. 

 
 
Vortex Temporum I 
 
 Vortex Temporum, a three-movement work for flute, clarinet, violin, viola, cello, 

and piano, poses some intriguing analytical difficulties. The work is a “spectral” 

composition, insofar as it is composed by reference to models based on the acoustic 

spectra of instruments. However, Grisey’s compositional techniques significantly alter 

these spectra, sometimes to the point of unrecognizability.10  

 As noted above, the compositional techniques and plans which Grisey used to 

construct the work have been described in detail in studies based on the composer’s 

sketches for the work. The description of compositional process, however, is not 

necessarily a good description of a piece’s aural and musical effect. Even though many 

                                                
9 Note that in one sense, the process of tone representation is the reverse of the spectralist procedure of 
instrumental synthesis. Instrumental synthesis approximates natural just-tuned overtones with tempered 
pitches, while tone representation can take a tempered approximation and restore its just intonation 
implications. 
 
10 Portions of this section are adapted from my article, “Tone Representation and Just Intervals in 
Contemporary Music” Contemporary Music Review 25/3 (June 2006), 263-281. 
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spectral techniques take acoustic and psychoacoustic facts as their starting point, there is 

often no clear, unambiguous relationship between such compositional techniques and 

their audible musical results.  

Manfred Stahnke has made some brief but tantalizing observations about how 

some of the harmonies of Vortex Temporum might be interpreted by ear—his 

interpretations address aspects of the harmonies which are not evident from a 

consideration of their compositional origin (see note 6, above). By examining the 

beginning of the work’s first movement through the lens of tone representation, I hope to 

offer some new insights into its harmonic relationships as I hear them. Tone 

representation can function as a sort of “listening grammar” for complex microtonal 

sonorities.11  

* * * 

 The first two minutes of the first movement use a very limited set of harmonic 

materials—we hear the alternation of three distinct “chords,” arpeggiated by the flute, 

clarinet, and piano.12 Each of these three chords was conceived by Grisey as a subset of a 

“stretched” harmonic series. The normal harmonic spectrum is systematically distorted, 

so that each octave is stretched to approximately an octave plus a quartertone. From the 

resulting distorted spectra, Grisey selects certain pitches for each chord. Figure 4.5, 

drawing on the sketch-based research of Baillet and Hervé, illustrates the derivation of 

the three chords (labeled, in order of appearance, x, y, and z). 
                                                
11 The term “listening grammar” was coined by Fred Lerdahl in his article “Cognitive Constraints on 
Compositional Systems,” in Generative Processes in Music: The Psychology of Performance, 
Improvisation, and Composition, ed. John Sloboda (Oxford: Oxford University Press, 1988): 231-59. 
Lerdahl makes a distinction between listening grammars (which a listener uses to make sense of a musical 
work) and compositional grammars (which a composer uses to create a work). 
 
12 The arpeggiated figure is intentionally derived from a gesture in Ravel’s Daphnis and Chloe. See Hervé 
and Baillet (op. cit.) for details. 
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Figure 4.5: Derivation of Vortex Temporum chords x, y, and z from stretched 
spectra. 
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As discussed above, the stretched harmonic spectrum is conceived as an analogy 

to the mildly inharmonic spectra of many common musical sounds. If Grisey’s more 

intensely stretched spectra were played in their entirety, and with simple sine tone 

partials, we might recognize their connections to their acoustic models. However, in 

Vortex Temporum, only a small subset of each spectrum is heard, and that is 

“resynthesized” using complex instrumental timbres. The selection of a subset of pitches 

from a spectrum can completely efface the spectral derivation of that subset—careful 

selection of pitches can even imply that their source is a different spectrum altogether. 

Grisey’s own awareness of this possibility is clear from a sketch in the Sacher Stiftung—

by selecting carefully from the stretched G spectrum in Figure 4.5, he derives subsets 

which imply a stretched D-sharp spectrum (D-sharp/D-¾sharp/B/E/G-sharp—partials 3, 

6, 9, 12, and 15) and even a compressed F-sharp spectrum (F-sharp/F-¼sharp/C-

¼sharp/F-¼sharp—partials 7, 13, 19, and 25). Given this gap between spectral 

compositional procedures and the aural effect of the derived chords, recounting the 

compositional process sheds little light on the way the harmonies are actually heard. It 

will be more productive to analyze the chords without reference to their derivation, 

concentrating instead on how we might hear the chords: their tone representations, 

internal tensions, and relationships to one another.  
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Figure 4.6: Arrangement of chords x, y, and z in Vortex Temporum, rehearsal 
numbers 1 to 19. 
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Figure 4.6 shows how the three chords x, y, and z are deployed in rehearsal 

numbers 1 through 19 (this figure is based loosely on Baillet, p. 214). At each rehearsal 

number, the arpeggiation is punctuated by a cluster of very high piano notes, and 

sometimes quick notes in the strings—however, these short-lived punctuations do not 

seem to substantially affect the harmonic perception of the three sustained arpeggio 

chords, so they will be omitted from this analysis. Sometimes, the arpeggiation is joined 

by sustained single tones in one of the strings (shown here as half notes followed by bars 

indicating their length). As fixed points opposing the rapidly moving arpeggios, these 

sustained tones capture our aural attention very strongly, and they will be given 

corresponding weight in our analysis.  
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Figure 4.7: Tone representation analysis of Vortex Temporum chords x, y, and z. 
 
 
 
chord x 

 Figure 4.7 illustrates some possible tone representations for the chords x, y, and z. 

(Boxed pitches indicate the notes which are sometimes held as “pedal points” by the 

strings.) At the beginning of Vortex Temporum, the arpeggiation of chord x is sustained 

for more than thirty seconds; it seems false to musical experience to assert that we don’t 

begin making sense of this chord until there’s something to compare it to. One advantage 

of tone representation is that we can say things about collections of pitches without 

comparing them to other collections, as in pitch-class set analysis. The technique of 
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pitch-class set analysis is essentially comparative; in technical terms, this means that we 

can say very little about a pitch collection until we find something to compare it to. In 

many musical situations, however, we will want to say something right away. The idea of 

tone representation will allow us to make observations about the internal composition of 

this complex chord from the very beginning of the work. This analytical approach does 

not view the identification of motivic repetition within a work as the most significant type 

of relationship—instead, we can cite the harmonic tendencies of any given collection, 

along with any internal tensions or ambiguities of tone representation. These tensions are 

essential in making the chord compelling to listen to for such a long time. 

One way of hearing the first chord is as a combination of tones related to two 

harmonic centers, D and D-¼sharp (see Figure 4.7): the A and F-sharp imply a D root, 

while the A-¼sharp and D-¼sharp imply D-¼sharp. This tone representation is 

essentially what we would expect from the compositional derivation of the chords: the 

stretching process moves the C-sharp “fundamental” up to D, then to D-¼sharp. 

However, the pitches G-¾sharp and B-flat don’t fit well with either the D or D-¼sharp 

fundamentals (the question marks on Figure 4.7 indicate that the corresponding pitches 

are unusually out of tune for the indicated tone representation).  Describing the chord as 

based on D or D-¼sharp (or, for that matter, as a stretched C-sharp spectrum) gives only 

an overall, statistical impression, which doesn’t account well for details; to me, though, 

the harmonic details are precisely what makes this harmony interesting.  

Another, more nuanced interpretation recognizes an F root for the lower part of 

the sonority, combined with an E-¼sharp root for the upper part. An advantage of this 

interpretation over the D/D-¼sharp one is that we can recognize a definite tone 
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representation for every pitch, accepting less mistuning between the sounding pitches and 

their just intonation tone representations. Aurally, I find this tone representation much 

more convincing, even though one must accept quite high partial classes, 17 and 21, to 

account for the F-sharp and A-¼sharp as part of the F spectrum. A low F played beneath 

the harmony seems to fit well as a “root” for the lower half of the chord; this is largely 

due to the harmonic strength of the fourth C/F (an interval which was problematic in the 

D/D-¼sharp reading). This interpretation gives us a clear explanation for the prominent 

C-F fourth, and does not require that we distort it into a more complex interval. 

 The arpeggio figuration tends to temporally separate the upper and lower parts of 

the chord. Playing the upper part of the chord alone (from the G-¾sharp up) makes its 

orientation toward E-¼sharp clearly audible. By recognizing a clearly delimited E-

¼sharp collection above the F collection, the sonority seems much more like a 

compressed spectrum than a stretched one (as the chord’s derivation would suggest); we 

also have a good explanation for the quartertone-flat octaves F/E-¼sharp and C/B-

¼sharp, which are responsible for much of the chord’s characteristic tension. 

 The ambiguity between the two possible tone representations of chord x—as a 

stretched spectrum with D and D-¼sharp roots or a compressed spectrum on F and E-

¼sharp—seems to reflect an essential part of Grisey’s musical style. As Stahnke writes, 

“Grisey plays with the shape-finding capability (Gestaltfindungsfähigkeit) of our ear, 

with the thresholds of our awareness.”13 The play between two plausible tone 

representations helps to animate the chord through this long passage.14 

                                                
13 Stahnke, “Zwei Blumen,” 383. 
 
14 In reference to the opening harmony of Vortex Temporum I (based on a stretched C# spectrum), Manfred 
Stahnke writes: “We hear a certain quasitonal harmonicity, but can’t find any “tonic feeling” for the tone 
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chord y 

The first major harmonic change in the piece occurs at rehearsal number 6, with 

the move to chord y. As we know, this collection shares a common origin with chord x; 

both are subsets of the same stretched spectrum. We can easily hear that the two chords 

are closely related, since more than half of chord y’s pitches are common tones with 

chord x. Does this mean that the chords have the same harmonic effect? In fact, the 

changed pitches, and particularly the overall higher register, make the new chord’s tone 

representations subtly different from those of chord x.  

We hear a continuation of the F/E-¼sharp tone representation quite strongly—

indeed, the F root of the lower part of the chord is much stronger than in chord x, in the 

absence of the F-sharp and A-¼sharp which were fairly weak partial classes of F. 

Without these pitches, the C/F fourth can be represented as 6:8 rather than the more 

complex 24:32. Three of the four new pitches (F-¾sharp, D, and D-¾sharp) fit well with 

the E-¼sharp fundamental, while the high G-sharp could be F(19) or a rather flat E-

¼sharp(20). 

 The sense that the chord might be heard as based on D is considerably weakened by 

the absence of the low A and F-sharp. However, we can still sense the possibility of D-

¼sharp as a root for three of the lower notes of the chord (C, D-¼sharp, and F-¾sharp, 

but not F-natural). This is a byproduct of the stretched spectrum in the compositional 

process—if we take a sample from further up in the spectrum, the higher the perceived 

“root” of that sample will be. The sense of D-¼sharp as fundamental is strengthened by 

                                                                                                                                            
low C#, since Grisey begins with the fifth partial tone and through his spectral distortion reaches an 
extreme polyvalence of harmony: the neutral third (F# to A quartersharp) could also suggest a compressed 
spectrum on a “fundamental” F#: see also the diminished fifth C over F# and the natural seventh 
compressed to a sixth D-quartersharp.” Stahnke, “Die Schwelle des Horens,” 22. 
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the absence of the A and F-sharp, which were “out-of-tune” with the D-¼sharp root, and 

by the added F-¾sharp, which is D-¼sharp (10). 

 It’s also possible to recognize a weaker tone representation based on B-flat. The 

strength of the B-flat interpretation is that it can relate nearly all of the pitches to a single 

fundamental, but the very high partial numbers that it requires make it less convincing 

than the F/E-¼sharp interpretation. 

 When the music returns to chord x from chord y at rehearsal number 7, our 

perception of chord x is subtly colored by the experience of chord y. The sustained D-

¼sharp, a sustained note in the viola in chord y, is heard as closely linked to the sustained 

cello A in chord x. The strength of this linkage makes an “in tune” version of the interval 

A/D-¼sharp desirable—since this interval is clearly emerging as a harmonically 

important one, it makes sense to understand it as a representation of a just interval. Only 

the F tone representation allows us to hear the interval between A and D-¼sharp as a just 

relationship in the context of chord x, F(10:28), further strengthening the sense of an F 

root as opposed to D or D-¼sharp. 

 

chord z 

 At rehearsal number 10, we hear chord z for the first time. The pitches of this chord 

were selected from a spectral source set a tritone lower than that of chords x and y. Is 

there any way that we experience this harmonic change as a “tritone transposition”?  

Many of the pitches of chord z are a tritone below pitches in chords x and y (F, G-¾sharp, 

B-flat, B-¼sharp, and C-sharp in chord x map onto B, D-¼sharp, E, F-¼sharp, and G in 

chord z). However, the overall range remains the same, which works against the sense of 
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tritone transposition; also, as Stahnke points out, the chords are linked by close voice 

leading, creating a sense of continuity with chord x and weakening the sense of tritone 

transposition. “In comparison to the spectrum on C-sharp, we experience an almost 

stationary (gleichbleibendes) tone field, that seems only to be illuminated by a different 

light. The quartertone movements are important for this effect.”15  

Even acknowledging the many pitches in chord z which are related by a tritone to 

pitches in chord x, I don’t hear an overall transposition by tritone here. To me, the most 

aurally convincing account of the sonority is as a combination of pitches implying an A 

root in the lower part of the chord and an A-¼sharp root in the upper part. (The sense that 

the sustained cello A of chord x lingers aurally into chord z strengthens this tone 

representation.) While in chords x and y, the upper part of the chord was based on a 

fundamental a quartertone below the fundamental of the lower part (E-¼sharp above F, 

or in spectral lingo, a “compressed” spectrum), here, the upper part of the chord is based 

on a fundamental which is a quartertone above that of the lower part (A-¼sharp above A, 

or a “stretched” spectrum). The contrast between these two types of tone representations 

further weakens the case for a tritone transposition—we have a sense of a different type 

of harmony, not a transposition of the same type. If we do hear a change of overall “root” 

from chord x to chord z, it is likely to be from F to A—transposition up a third, not down 

a tritone.  

 It’s also possible to hear tone representations of E and C in this sonority—

particularly before the entrance at rehearsal number 16 of the sustained viola D-¼sharp, 

which contradicts both of these tone representations. The D-¼sharp strongly focuses our 

tone representations toward the A root for the lower notes of the chord; the lowest 
                                                
15 Stahnke, “Zwei Blumen,” 382. 



JUST INTERVALS AND TONE REPRESENTATION IN CONTEMPORARY MUSIC 

—222—   

trichord, B/D-¼sharp/E, is only possible with A as fundamental: A(9:11:12). The 

common D-¼sharp sustained tone with chord y also makes chord z sound similar to y in 

some ways—both are heard as contrasts to the more ubiquitous chord x. The shared high 

G-sharp and nearly identical overall register also help to cement a relationship between 

the chords, although they are harmonically quite different.  

The return of the D-¼sharp over chord z as a sustained tone is a striking harmonic 

event; this sustained pitch has previously only appeared with chord y, and we hear it quite 

differently in its new context. D-¼sharp is now heard as A(11) instead of F(7), and the 

dyad of sustained string notes A/D-¼sharp is reinterpreted to A(4:11) from F(10:28). The 

reinterpretation of this emphasized dyad, highlighted by the long duration of its 

component notes, can be heard as an essential part of the harmonic move from F to A.16  

 
 
Vortex Temporum II 
 
 Figure 4.8 is an outline of Grisey’s deployment of spectra in the second movement 

of Vortex Temporum. Our analysis will begin with the stretched B-flat spectrum in 

section II of the movement (rehearsal numbers 4 to 7), schematized in Figure 4.9. All the 

pitches of the spectrum are rounded off to the nearest quartertone. The pianist cycles 

continuously downward through the boxed notes on the bottom staff (four pitches of the 

piano are retuned a quartertone flat to allow the performance of microtonal intervals). 

The pianist re-articulates the stemmed notes on every beat. The other instruments of the 

ensemble—flute, clarinet, violin, viola, and cello—play sustained tones: these are shown 

on the upper two staves of Figure 4.9 with bars indicating their duration.  

                                                
16 One can hear a similar harmonic relationship, but in reverse, in the excerpt from Ligeti’s Melodien 
discussed in Chapter 2: the dyad B/E-flat changes from B(16:22) to G(10:14). 
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Figure 4.8: Spectra in Vortex Temporum II 
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Figure 4.9 
a: Harmonic transcription of Vortex Temporum II, rehearsal numbers 4–7 
b: Possible tone representations 



Chapter 4: Gérard Grisey and the “Nature” of Harmony 

—225—  

The descending pitches of the piano imitate the well-known aural illusion of the endlessly 

descending Shepard tone—the descent seems continuous because as the entire complex 

of partials drifts downward, new high partials gradually fade in from silence and the 

lowest partials drop out: see Figure 4.10.17 

 
Figure 4.10: schematic illustration of a descending Shepard-Risset glissando 
 
 Rather than explain the harmonies of Vortex Temporum by reference to Grisey’s 

compositional derivation of the chords from natural models, we will focus on the 

experience of listening, taking tone representation as a model for our natural harmonic 

intuitions. Since no one fundamental offers a convincing tone representation for all the 

pitches in the excerpt, in Figure 4.9b I’ve identified four plausible tone representations, 

each describing different subsets of the complete harmony. Our choice of one tone 

representation over another depends on the musical context, and changes over the course 

of the passage. Often, not all pitches are equally important to our decision—we give more 

weight to repeated and held notes. The sonority rooted on B seems especially convincing 

                                                
17 See Roger Shepard, “Circularity in Judgments of Relative Pitch,” Journal of the Acoustical Society of 
America 36 (1964): 2346–2353. An example of a continuously descending Shepard tone can be found on 
the website of the Acoustical Society of America: http://asa.aip.org/demo27.html (accessed April 15, 
2008). 
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at the beginning of the excerpt, when the B is present as a held note in the flute and 

violin. However, the B representation cannot account for some salient pitches in the 

texture: the held G-¼flat and the repeated C-¼flat and D-¼sharp. As the B fades out, our 

attention turns to the tone representations which give these salient pitches more weight, 

and we experience the sonority as a combination of harmonies with roots on E-flat and C-

¼flat (the low repeated notes in the piano). At the end of the excerpt, the upper-register 

held pitches G, D-¼flat, F-sharp, and Bb strongly imply the tone representation D-

¼flat(11:16:21:26)—the piano’s B-flat, B, and D-¼sharp also fit into this interpretation, 

as partials 13, 14, and 17. 

 Figure 4.11 shows two analyses of the last spectral chord of the movement. 

Analysis 1 follows Grisey’s derivation of the chord, describing it as the third through 

twelfth partials of a stretched spectrum on E.  From a perceptual standpoint, though, this 

interpretation is full of problems—for example, we’re asked to hear the lowest four notes, 

C-F-A-C as implying E rather than F as a fundamental. My adaptation of Riemann’s tone 

representation, linking pitches by the simplest possible just intervals, leads to the much 

more satisfying Analysis 2. The chord consists of pitches drawn from two distinct 

harmonic roots: the notes C-F-A-C-D# are the third through seventh partials of an F 

fundamental, while the remaining F#-G#-A#-C-¼flat are the eighth through eleventh 

partials of an F# fundamental. 
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Figure 4.11: analysis of final harmonic area of movement 
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 The complexity and multivalence of these analyses reflect the aural richness of the 

harmony—I would argue that the competing pull of different tone representations is one 

of the things that keeps our attention engaged throughout this minute-long, largely static 

passage. When we view the chord through the lens of tone representation, its derivation 

from an exaggeratedly stretched spectrum is irrelevant—we focus instead on the complex 

ways that the harmony plays on our aural intuitions. The choice between the two types of 

nature I’ve discussed here—one external, and one internal—illustrates a broader decision 

between two models of analysis for Grisey’s music. One is essentially formalist and 

philological, based on sketch study and the recreation of the composer’s material and 

ideas, while the other is essentially phenomenological and pragmatic—the analyst’s 

subjective experience of the piece is taken as the essential explicandum. To my mind, the 

subjectivity of the pragmatic approach is not a weakness, but rather a strength—by 

allowing such analytical flexibility, we recognize the richness of musical listening and 

avoid the flattening of experience into a simplistic formal mold. 
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EPILOGUE: Tone Representation as a Pragmatic Theory 
 
 Tone representation is a valuable tool of a pragmatic approach to analysis: an 

approach based on taking aural experience seriously, instead of retreating to formalistic 

abstractions or speculations on the composer’s intent. By focusing our attention on sonic 

quality and rootedness, it suggests new readings of music in a variety of styles, from 

Schoenberg’s atonal music to Grisey’s spectral works. The theory makes it possible to 

put into words some of the most elusive aspects of our experience of complex 

harmonies—and by emphasizing listening instead of abstract “structure,” it offers a 

promising alternative to existing analytical techniques. 

 Through its emphasis on listening, tone representation can acknowledge ambiguity 

and multivalence as an essential part of musical experience, rather than insisting on a 

single structural interpretation. With the preference rules proposed in Chapter 2, we can 

weigh the advantages of different harmonic interpretations, recognizing that we draw 

upon multiple tone representations as we listen to a piece. As a theory of listening—as 

opposed to a theory of musical construction, like serialism or developing variation—tone 

representation can be applied to a broad range of works, not just music created by a 

certain compositional method. An analyst applying the tools of tone representation can 

approach works in different styles with the same interpretive principles: tone 

representation assumes that we bring the same principles of harmonic listening to all 

music. This common listening grammar can help us to formulate ideas about 

contemporary harmony which translate across stylistic boundaries 

 Tone representation revives (with modifications) the ratio model of interval, which 

dominated music theory for millennia but has been eclipsed by the competing distance 
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model in twentieth-century theory. In the version of ratio theory proposed here, the 

Pythagorean/just intonation tradition is updated with concepts from music psychology 

and psychoacoustics; certain aspects of the theory which once relied on numerology and 

Platonic forms can now be revised to rest on scientific research. The growing interest by 

composers in microtonality, spectral harmony, electronic sound, and extended just 

intonation makes the time ripe for a return to the insights offered by ratio intervals: in 

particular, their ability to describe specific qualities of consonance and dissonance and 

root stability. Ratio theory turns the focus away from the analytical geometries of the 

distance model toward an engagement with the more sensual aspects of musical sound. 

 The theory of tone representation depends on several basic premises, described in 

Chapter 1. The first (and most essential) of these premises is that just intervals are the 

referential intervals for harmonic perception: the stable intervals which act as landmarks 

in the continuum of all possible interval sizes. Embracing this approach to thinking about 

harmony offers a fresh perspective on pitch structure, with several distinct advantages. 

One is the potential for limitless expansion of the world of tone relationships: once we 

accept numerical ratios as basic harmonic building blocks, we can extend the boundaries 

of our musical systems to include higher prime numbers and more complex just intervals. 

This potential for expansion offers obvious benefits for composers, but also suggests new 

ways of understanding our experience of listening to existing repertoires. A second 

advantage of thinking of pitch in terms of just interval is the organizational framework 

created by our sense of rootedness. Every interval implies a root, and at the same time an 

array of related pitches which share that root. This allows us to associate pitches through 

shared harmonic implications, not just by the geometrical transformations of pitch-class 
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set theory (which takes a purely distance approach to interval). The new harmonic 

relationships offered by tone representation can broaden our vocabulary for describing 

musical experience; the flexibility of the method can stand on its own or complement 

standard distance-based approaches. 

 One feature that separates tone representation from the tradition of just intonation 

theory is the acceptance of intonational error. The degree of tolerance I’ve incorporated 

into the theory is derived from the theories of James Tenney; however, the assumption 

that we can still recognize just intervals in approximate versions is implicit in the long 

history of musical temperament. Tolerance for mistuned just intervals allows the 

application of the theory in a variety of contexts, not just purely-tuned music conceived 

in just intonation. We find that the harmonic meaning of just intervals persists even in 

music written for the equal-temperament piano, as we saw in the analysis of an excerpt 

from Schoenberg’s Op. 11, No. 2 at the end of Chapter 2.  

 The harmonic relationships brought to the fore by tone representation suggest ways 

of associating pitches in complex musical textures: grouping pitches which are connected 

by just intervals is a convincing way of segmenting a texture into smaller entities. 

Frequently I’ve borrowed terms from Albert Bregman’s theory of auditory stream 

analysis: the parsing of aural information into separate streams of information to form a 

mental picture of the world. Tone representation’s link to auditory scene analysis 

suggests that it could be a useful tool for an “ecological” approach to discussing music, 

such as that recently proposed by Eric Clarke.1 The theory acknowledges that listening to 

                                                
1 Eric Clarke, Ways of listening: an ecological approach to the perception of musical meaning (Oxford and 
New York: Oxford University Press, 2005). 
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music is not simply following a predetermined structure, but a continual, active 

construction of meaning and perceived form. 

 My theory of tone representation is implemented in a set of three preference rules, 

which can be applied to determine the most likely tone representations for any collection 

of pitches. The rules are designed to work in combination with one another: frequently 

the demands of one rule will contradict those of another rule, and determining the best 

tone representation will require a compromise between the two. The preference rules tell 

us to: 1) prefer tone representations which closely match the music surface, requiring a 

minimum of mental retuning; 2) prefer the simplest tone representations, i.e., those 

containing the simplest just intervals; and 3) minimize the number of separate 

fundamentals. These rules reflect principles from psychological research: the principle of 

Prägnanz in Gestalt psychology, Bregman’s rules for auditory scene analysis, and the 

virtual pitch algorithm of Ernst Terhardt. 

 As a pragmatic theory, the ultimate test of tone representation is how it can inform 

our understanding of music: how (as William James puts it) the theory can “help us to get 

into satisfactory relation with other parts of our experience.”2 Several analyses of 

twentieth-century music have been offered as illustrations of how the theory might 

change our understanding of music by composers as diverse as Schoenberg and La Monte 

Young. The third chapter of this dissertation illustrates the range of composers who have 

been inspired by the ratio approach to interval; tone representation is particularly apt for 

exploring music by just intonation composers like Partch, Harrison, Johnston, Sims, 

Young, Tenney, and others. The theory can also shed light on European composers with 

more peripheral connections to just intonation theory, like Stockhausen, Ligeti, Stahnke, 
                                                
2 William James, “What Pragmatism Means,” op. cit., 2 
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and Haas. It can also provide an alternative take on music by spectral composers like 

Murail and Grisey; spectral music often draws on concepts (overtones, harmonicity) 

related to just intonation theory, but through a very different aesthetic and theoretical 

orientation. In the final chapter of this dissertation, I’ve used tone representation as a way 

of understanding Grisey’s spectral Vortex Temporum through the lens of extended just 

intonation. Through this approach to the music, we can describe how we make sense of 

its harmonies without reference to the procedures Grisey used to generate them; the focus 

of research turns from sketch study and reconstruction of compositional intent to an 

introspective exploration of musical experience. 

 This turn toward experience is the goal of the theory of tone representation; as a 

pragmatic theory grounded in the psychology of musical perception, it offers a clear way 

to discuss our harmonic intuitions. By emphasizing the act of listening as opposed to an 

abstract structure, tone representation is an alternative to formalist modes of analysis. As 

twenty-first century composers continue to explore the physical and sensual properties of 

sound, tone representation has the potential to become a valuable tool in interpreting and 

describing our musical experience. 
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